scholarly journals Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas aeruginosa Isolates From Drinking Water in China

2020 ◽  
Vol 11 ◽  
Author(s):  
Lei Wei ◽  
Qingping Wu ◽  
Jumei Zhang ◽  
Weipeng Guo ◽  
Qihui Gu ◽  
...  

Pseudomonas aeruginosa is an important opportunistic pathogen and remains a major threat to the microbial safety of drinking water. There is a lack of comprehensive data on P. aeruginosa contamination in drinking water in China. Therefore, this study aimed to determine the prevalence, genetic diversity, virulence genes, and antimicrobial resistance of P. aeruginosa isolated from mineral water and spring water in China. From January 2013 to January 2014, 314 drinking water samples were collected from 23 cities in China. Of the collected samples, 77 (24.5%) were contaminated with P. aeruginosa, and these comprised 34 raw water (30.4%), 39 activated carbon-filtered water (30.6%), and four final water product (3.9%). A total of 132 P. aeruginosa isolates were obtained, and all of them showed the presence of virulence genes, with the detection rates of ExoU, ExoS, phzM, toxA, and lasB genes being 7.6, 86.3, 95.5, 89.4, and 100%, respectively. All isolates were sensitive to the 14 antibiotics (ciprofloxacin, levofloxacin, ofloxacin, norfloxacin, gentamicin, tobramycin, amikacin, polymyxin B, imipenem, meropenem, aztreonam, ceftazidime, cefepime, and piperacillin/tazobactam) tested. The 132 isolates were categorized into 42 sequence types according to multilocus sequence typing, and ST235 accounted for 8.3% (11) of the total isolates. Thus, this study provides comprehensive data on the prevalence and characteristics of P. aeruginosa in drinking water in China and can aid in developing preventive measures against contamination during the drinking water treatment process.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer M. Peña ◽  
Samantha M. Prezioso ◽  
Kirsty A. McFarland ◽  
Tracy K. Kambara ◽  
Kathryn M. Ramsey ◽  
...  

AbstractIn Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.


Author(s):  
Baopeng Yang ◽  
Yujun Jiang ◽  
Yongxin Jin ◽  
Fang Bai ◽  
Zhihui Cheng ◽  
...  

Polymyxins are considered as the last resort antibiotics to treat infections caused by multidrug-resistant Gram negative pathogens. Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections in humans. Proteins involved in lipopolysaccharide modification and maintaining inner and outer membrane integrities have been found to contribute to the bacterial resistance to polymyxins. Oligoribonuclease (Orn) is an exonuclease that regulates the homeostasis of intracellular (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), thereby regulating the production of extracellular polysaccharide in P. aeruginosa . Previously, we demonstrated that Orn affects the bacterial resistance to fluoroquinolone, β-lactam and aminoglycoside antibiotics. In this study, we found that mutation of orn increased the bacterial survival following polymyxin B treatment in a wild type P. aeruginosa strain PA14. Overexpression of c-di-GMP degradation enzymes in the orn mutant reduced the bacterial survival. By using a fluorescence labeled polymyxin B, we found that mutation of orn increased the bacterial surface bound polymyxin B. Deletion of the Pel synthesis genes or treatment with a Pel hydrolase reduced the surface bound polymyxin B and bacterial survival. We further demonstrated that Pel binds to extracellular DNA (eDNA), which traps polymyxin B and thus protects the bacterial cells. Collectively, our results revealed a novel defense mechanism against polymyxin in P. aeruginosa .


1999 ◽  
Vol 48 (5) ◽  
pp. 177-185 ◽  
Author(s):  
O. Griffini ◽  
M. L. Bao ◽  
D. Burrini ◽  
D. Santianni ◽  
C. Barbieri ◽  
...  

2009 ◽  
Vol 9 (4) ◽  
pp. 379-386 ◽  
Author(s):  
S. A. Baghoth ◽  
M. Dignum ◽  
A. Grefte ◽  
J. Kroesbergen ◽  
G. L. Amy

For drinking water treatment plants that do not use disinfectant residual in the distribution system, it is important to limit availability of easily biodegradable natural organic matter (NOM) fractions which could enhance bacterial regrowth in the distribution system. This can be achieved by optimising the removal of those fractions of interest during treatment; however, this requires a better understanding of the physical and chemical properties of these NOM components. Fluorescence excitation-emission matrix (EEM) and liquid chromatography with online organic carbon detection (LC-OCD) were used to characterize NOM in water samples from one of the two water treatment plants serving Amsterdam, The Netherlands. No disinfectant residual is applied in the distribution system. Fluorescence EEM and LC-OCD were used to track NOM fractions. Whereas fluorescence EEM shows the reduction of humic-like as well as protein-like fluorescence signatures, LC-OCD was able to quantify the changes in dissolved organic carbon (DOC) concentrations of five NOM fractions: humic substances, building blocks (hydrolysates of humics), biopolymers, low molecular weight acids and neutrals.


2021 ◽  
Vol 9 (01) ◽  
pp. 512-524
Author(s):  
Konan Lopez Kouame ◽  
◽  
Nogbou Emmanuel Assidjo ◽  
Andre Kone Ariban ◽  
◽  
...  

This article presents an optimization of the drinking water treatment process at the SUCRIVOIRE treatment station. The objective is to optimize the coagulation and flocculation process (fundamental process of the treatment of said plant)by determining the optimal dosages of the products injected and then proposes a program for calculating the optimal dose of coagulant in order to automatically determine the optimal dose of the latter according to the raw water quality. This contribution has the advantage of saving the user from any calculations the latter simply enters the characteristics of the raw effluent using the physical interface of the program in order to obtain the optimum corresponding coagulant concentration. For the determination of the optimal coagulant doses, we performed Jar-Test flocculation tests in the laboratory over a period of three months. The results made it possible to set up a polynomial regression model of the optimal dose of alumina sulfate as a function of the raw water parameters. A program for calculating the optimal dose of coagulant was carried out on Visual Basic. The optimal doses of coagulant obtained vary from 25, 35, 40 and 45 mg/l depending on the characteristics of the raw effluent. The model obtained is: . Finally, verification tests were carried out using this model on the process. The results obtained meet the WHO drinkability standards for all parameters for a settling time of two hours.


Sign in / Sign up

Export Citation Format

Share Document