scholarly journals Antimicrobial Resistance Profiles and Virulence Genes of Pseudomonas aeruginosa Isolates Originated from Hospitalized Patients in Shiraz, Iran

2018 ◽  
Vol 6 (2) ◽  
pp. 72-76
Author(s):  
Maryam Motevasel ◽  
Masoud Haghkhah ◽  
◽  
2020 ◽  
Vol 11 ◽  
Author(s):  
Lei Wei ◽  
Qingping Wu ◽  
Jumei Zhang ◽  
Weipeng Guo ◽  
Qihui Gu ◽  
...  

Pseudomonas aeruginosa is an important opportunistic pathogen and remains a major threat to the microbial safety of drinking water. There is a lack of comprehensive data on P. aeruginosa contamination in drinking water in China. Therefore, this study aimed to determine the prevalence, genetic diversity, virulence genes, and antimicrobial resistance of P. aeruginosa isolated from mineral water and spring water in China. From January 2013 to January 2014, 314 drinking water samples were collected from 23 cities in China. Of the collected samples, 77 (24.5%) were contaminated with P. aeruginosa, and these comprised 34 raw water (30.4%), 39 activated carbon-filtered water (30.6%), and four final water product (3.9%). A total of 132 P. aeruginosa isolates were obtained, and all of them showed the presence of virulence genes, with the detection rates of ExoU, ExoS, phzM, toxA, and lasB genes being 7.6, 86.3, 95.5, 89.4, and 100%, respectively. All isolates were sensitive to the 14 antibiotics (ciprofloxacin, levofloxacin, ofloxacin, norfloxacin, gentamicin, tobramycin, amikacin, polymyxin B, imipenem, meropenem, aztreonam, ceftazidime, cefepime, and piperacillin/tazobactam) tested. The 132 isolates were categorized into 42 sequence types according to multilocus sequence typing, and ST235 accounted for 8.3% (11) of the total isolates. Thus, this study provides comprehensive data on the prevalence and characteristics of P. aeruginosa in drinking water in China and can aid in developing preventive measures against contamination during the drinking water treatment process.


2021 ◽  
pp. 105323
Author(s):  
Li-li Guo ◽  
Lu-mei Li ◽  
Yan Li ◽  
Xiao-xiao Duan ◽  
Yu-jing Liu ◽  
...  

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S178-S179
Author(s):  
Dongmu Zhang ◽  
John Hawkshead ◽  
Sanjay Merchant

Author(s):  
Ali Alyahawi ◽  
Abdul Monem Alhomidi ◽  
Nawal Al-Henhena

Pseudomonas aeruginosa is clinically significant and opportunistic pathogenthat causes infections in hospitalized patients. Antibiotic resistance is a major concern in clinical practice. The ongoing emergence of resistant strains that cause nosocomial infections contributes substantially to the morbidity and mortality of hospitalized patients. Objective of present study was to estimate the prevalence of Pseudomonas aeruginosa and the antimicrobial resistance patterns of P. aeruginosa isolates from hospitalized patients. The study was performed at microbiology department of a local hospital in Sana’a, Yemen. All the patients' samples of hospital departments from January, 2017 to December, 2017 were included. A Total of 2079 samples were collected during the study period. Among them, 193 strains of Pseudomonas spp. were isolated. One hundred ninety three isolates of P. aeruginosa were isolated from different clinical specimens and fully characterized by standard bacteriological procedures. Antimicrobial susceptibility pattern of each isolates was carried out by the Kirby-Bauer disk diffusion method as per CLSI guidelines. Majority of P. aeruginosa were isolated from Sputum, followed by urine specimens. The isolate pathogen showed the highest sensitive to Meropenem (85.5%), followed by Amikacin (80.5%), Imipenem (80.0%), and Piperacillin/tazobactam (77.2). The highest frequency of resistance (96.2%) was observed with amoxicillin /clavulinic Acid followed by cefuroxime 94.6%, ampicillin/ sulbactam 94.5%, Co-Trimoxzole 80.5%, and norfloxacin 54%. The result confirmed the occurrence of drug resistance strains of P. aeruginosa. Meropenem, imipenem, and amikacin, were found to be the most effective antimicrobial drugs. It therefore calls for a very judicious, appropriate treatment regimens selection by the physicians to limit the further spread of antimicrobial resistance P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document