Promotion of Tomato Growth by the Volatiles Produced by the Hypovirulent Strain QT5-19 of the Plant Gray Mold Fungus Botrytis cinerea

2021 ◽  
pp. 126731
Author(s):  
Md Kamaruzzaman ◽  
Ze Wang ◽  
Mingde Wu ◽  
Long Yang ◽  
Yongchao Han ◽  
...  
2021 ◽  
Vol 22 (4) ◽  
pp. 1694
Author(s):  
Jiao Sun ◽  
Chen-Hao Sun ◽  
Hao-Wu Chang ◽  
Song Yang ◽  
Yue Liu ◽  
...  

Cyclophilin (Cyp) and Ca2+/calcineurin proteins are cellular components related to fungal morphogenesis and virulence; however, their roles in mediating the pathogenesis of Botrytis cinerea, the causative agent of gray mold on over 1000 plant species, remain largely unexplored. Here, we show that disruption of cyclophilin gene BcCYP2 did not impair the pathogen mycelial growth, osmotic and oxidative stress adaptation as well as cell wall integrity, but delayed conidial germination and germling development, altered conidial and sclerotial morphology, reduced infection cushion (IC) formation, sclerotial production and virulence. Exogenous cyclic adenosine monophosphate (cAMP) rescued the deficiency of IC formation of the ∆Bccyp2 mutants, and exogenous cyclosporine A (CsA), an inhibitor targeting cyclophilins, altered hyphal morphology and prevented host-cell penetration in the BcCYP2 harboring strains. Moreover, calcineurin-dependent (CND) genes are differentially expressed in strains losing BcCYP2 in the presence of CsA, suggesting that BcCyp2 functions in the upstream of cAMP- and Ca2+/calcineurin-dependent signaling pathways. Interestingly, during IC formation, expression of BcCYP2 is downregulated in a mutant losing BcJAR1, a gene encoding histone 3 lysine 4 (H3K4) demethylase that regulates fungal development and pathogenesis, in B. cinerea, implying that BcCyp2 functions under the control of BcJar1. Collectively, our findings provide new insights into cyclophilins mediating the pathogenesis of B. cinerea and potential targets for drug intervention for fungal diseases.


2015 ◽  
Vol 28 (11) ◽  
pp. 1167-1180 ◽  
Author(s):  
Jani Kelloniemi ◽  
Sophie Trouvelot ◽  
Marie-Claire Héloir ◽  
Adeline Simon ◽  
Bérengère Dalmais ◽  
...  

Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process.


2000 ◽  
Vol 13 (7) ◽  
pp. 724-732 ◽  
Author(s):  
Li Zheng ◽  
Mathew Campbell ◽  
Jennifer Murphy ◽  
Stephen Lam ◽  
Jin-Rong Xu

In Magnaporthe grisea, a well-conserved mitogen-activated protein (MAP) kinase gene, PMK1, is essential for fungal pathogenesis. In this study, we tested whether the same MAP kinase is essential for plant infection in the gray mold fungus Botrytis cinerea, a necrotrophic pathogen that employs infection mechanisms different from those of M. grisea. We used a polymerase chain reaction-based approach to isolate MAP kinase homologues from B. cinerea. The Botrytis MAP kinase required for pathogenesis (BMP) MAP kinase gene is highly homologous to the M. grisea PMK1. BMP1 is a single-copy gene. bmp1 gene replacement mutants produced normal conidia and mycelia but were reduced in growth rate on nutrient-rich medium. bmp1 mutants were nonpathogenic on carnation flowers and tomato leaves. Re-introduction of the wild-type BMP1 allele into the bmp1 mutant restored both normal growth rate and pathogenicity. Further studies indicated that conidia from bmp1 mutants germinated on plant surfaces but failed to penetrate and macerate plant tissues. bmp1 mutants also appeared to be defective in infecting through wounds. These results indicated that BMP1 is essential for plant infection in B. cinerea, and this MAP kinase pathway may be widely conserved in pathogenic fungi for regulating infection processes.


2012 ◽  
Vol 25 (4) ◽  
pp. 481-495 ◽  
Author(s):  
S. Giesbert ◽  
J. Schumacher ◽  
V. Kupas ◽  
J. Espino ◽  
N. Segmüller ◽  
...  

Agrobacterium tumefaciens–mediated transformation (ATMT) was used to generate an insertional mutant library of the gray mold fungus Botrytis cinerea. From a total of 2,367 transformants, 68 mutants showing significant reduction in virulence on tomato and bean plants were analyzed in detail. As reported for other fungal ATMT libraries, integrations were mostly single copy, occurred preferentially in noncoding (regulatory) regions, and were frequently accompanied by small deletions of the target sequences and loss of parts of the border sequence. Two T-DNA integration events that were found to be linked to virulence were characterized in more detail: a catalytic subunit of a PP2A serine/threonine protein phosphatase (BcPP2Ac) and the SPT3 subunit of a Spt-Ada-Gcn5-acetyltransferase (SAGA-like) transcriptional regulator complex. Gene replacement and silencing approaches revealed that both Bcpp2Ac and SPT3 are crucial for virulence, growth, and differentiation as well as for resistance to H2O2 in B. cinerea.


2021 ◽  
Vol 12 ◽  
Author(s):  
Na Liu ◽  
Shanyue Zhou ◽  
Baohua Li ◽  
Weichao Ren

Gray mold caused by Botrytis cinerea is a devastating disease that leads to huge economic losses worldwide. Autophagy is an evolutionarily conserved process that maintains intracellular homeostasis through self-eating. In this study, we identified and characterized the biological function of the autophagy-related protein Atg6 in B. cinerea. Targeted deletion of the BcATG6 gene showed block of autophagy and several phenotypic defects in aspects of mycelial growth, conidiation, sclerotial formation and virulence. All of the phenotypic defects were restored by targeted gene complementation. Taken together, these results suggest that BcAtg6 plays important roles in the regulation of various cellular processes in B. cinerea.


2017 ◽  
Vol 11 (10) ◽  
pp. 1236-1243
Author(s):  
Tayb Elassma Ibrahim Mustafa DafaAlla ◽  
◽  
Mohnad Abdalla ◽  
Nada Algaili ◽  
Elawad Elhaj ◽  
...  

2001 ◽  
Vol 14 (11) ◽  
pp. 1293-1302 ◽  
Author(s):  
Christian Schulze Gronover ◽  
Daniela Kasulke ◽  
Paul Tudzynski ◽  
Bettina Tudzynski

To identify signal transduction pathways of the gray mold fungus Botrytis cinerea involved in host infection, we used heterologous hybridization and a polymerase chain reaction (PCR)-based approach to isolate two genes (bcg1 and bcg2) encoding α subunits of heterotrimeric GTP-binding proteins. Both genes have homologues in other fungi: bcg1 is a member of the Gαi class, whereas bcg2 has similarities to the magC gene of Magnaporthe grisea and the gna-2 gene of Neurospora crassa. Reverse-transcription (RT)-PCR experiments showed clearly that both genes are expressed at very early stages in infected bean leaves. Gene replacement experiments were performed for both genes. bcg1 null mutants differ in colony morphology from the wild-type strain, do not secrete extracellular proteases, and show clearly reduced pathogenicity on bean and tomato. Conidia germination and penetration of plant tissue is not disturbed in bcg1 mutants, but the infection process stops after formation of primary lesions. In contrast, bcg2 mutants show wild-type colony morphology in axenic culture and are only slightly reduced in pathogenicity. Complementation of bcg1 mutants with the wild-type gene copy led to the full recovery of colony morphology, protease secretion, and pathogenicity on both host plants. Application of exogenous cyclic AMP restored the wild-type growth pattern of bcg1 mutants, but not the protease secretion, implicating an essential role of BCG1 in different signaling pathways.


2015 ◽  
Vol 28 (6) ◽  
pp. 659-674 ◽  
Author(s):  
Julia Schumacher ◽  
Adeline Simon ◽  
Kim C. Cohrs ◽  
Stefanie Traeger ◽  
Antoine Porquier ◽  
...  

Botrytis cinerea, the gray mold fungus, is an important plant pathogen. Field populations are characterized by variability with regard to morphology, the mode of reproduction (conidiation or sclerotia formation), the spectrum of secondary metabolites (SM), and virulence. Natural variation in bcvel1 encoding the ortholog of Aspergillus nidulans VeA, a member of the VELVET complex, was previously shown to affect light-dependent differentiation, the formation of oxalic acid (OA), and virulence. To gain broader insight into the B. cinerea VELVET complex, an ortholog of A. nidulans LaeA, BcLAE1, a putative interaction partner of BcVEL1, was studied. BcVEL1 but not its truncated versions interacts with BcLAE1 and BcVEL2 (VelB ortholog). In accordance with the expected common as well as specific functions of BcVEL1 and BcLAE1, the deletions of both genes result in similar though not identical phenotypes. Both mutants lost the ability to produce OA, to colonize the host tissue, and to form sclerotia. However, mutants differ with regard to aerial hyphae and conidia formation. Genome-wide expression analyses revealed that BcVEL1 and BcLAE1 have common and distinct target genes. Some of the genes that are underexpressed in both mutants, e.g., those encoding SM-related enzymes, proteases, and carbohydrate-active enzymes, may account for their reduced virulence.


2011 ◽  
Vol 77 (9) ◽  
pp. 2887-2897 ◽  
Author(s):  
Michaela Leroch ◽  
Dennis Mernke ◽  
Dieter Koppenhoefer ◽  
Prisca Schneider ◽  
Andreas Mosbach ◽  
...  

ABSTRACTThe green fluorescent protein (GFP) and its variants have been widely used in modern biology as reporters that allow a variety of live-cell imaging techniques. So far, GFP has rarely been used in the gray mold fungusBotrytis cinereabecause of low fluorescence intensity. The codon usage ofB. cinereagenes strongly deviates from that of commonly used GFP-encoding genes and reveals a lower GC content than other fungi. In this study, we report the development and use of a codon-optimized version of theB. cinereaenhanced GFP (eGFP)-encoding gene (Bcgfp) for improved expression inB. cinerea. Both the codon optimization and, to a smaller extent, the insertion of an intron resulted in higher mRNA levels and increased fluorescence. Bcgfpwas used for localization of nuclei in germinating spores and for visualizing host penetration. We further demonstrate the use of promoter-Bcgfpfusions for quantitative evaluation of various toxic compounds as inducers of theatrBgene encoding an ABC-type drug efflux transporter ofB. cinerea. In addition, a codon-optimized mCherry-encoding gene was constructed which yielded bright red fluorescence inB. cinerea.


Sign in / Sign up

Export Citation Format

Share Document