Investigating the equilibrium and adsorption kinetics for the removal of Ni (II) ions from aqueous solutions using adsorbents prepared from the modified waste newspapers: A low-cost and available adsorbent

2019 ◽  
Vol 146 ◽  
pp. 1043-1053 ◽  
Author(s):  
Mohammad Hadi Dehghani ◽  
Mohammad Sarmadi ◽  
Mohammad Reza Alipour ◽  
Daryoush Sanaei ◽  
Hamid Abdolmaleki ◽  
...  
2017 ◽  
Vol 77 (2) ◽  
pp. 548-554 ◽  
Author(s):  
Haihua Zhao ◽  
Yingwen Xue ◽  
Li Long ◽  
Xiaolan Hu

Abstract To develop low-cost adsorbents for aqueous nitrate, biochars were prepared from three types of agricultural residuals at different pyrolysis temperatures (300 °C, 450 °C, and 600 °C). The corncob biochar produced at 600 °C (CC600) was the best nitrate adsorbent of all the tested biochars. Characterization results showed that CC600 had good thermal stability, porous structure, and abundant surface functional groups. Findings from batch adsorption experiments demonstrated that CC600 showed relatively fast adsorption kinetics to nitrate in aqueous solutions. In addition, the Langmuir adsorption capacity of CC600 to nitrate was 14.46 mg/g, comparable to that of other biochar-based adsorbents. Therefore, CC600 showed promising potential to be used as a low-cost adsorbent for the treatment of nitrate in water.


2021 ◽  
Vol 13 (16) ◽  
pp. 8994
Author(s):  
Eliana Contreras-López ◽  
Victor Miyashiro Kiyan ◽  
Jaime Porras Cerrón ◽  
Ana María Muñoz ◽  
Fernando Ramos-Escudero ◽  
...  

This study aimed to evaluate the adsorption capacity of an adsorbent obtained using sanky peel for the removal of phosphate from aqueous solutions. The study was conducted in two stages: (1) adsorbent preparation considering yield, phosphate removal, adsorption capacity, and textural characteristics; (2) an assessment of the effectiveness of using sanky peel as an adsorbent for removing phosphates from aqueous solutions. Batch adsorption was studied in aqueous solutions containing phosphate and calcium ions with the selected adsorbent. Adsorption kinetics and equilibrium isotherms were studied using mathematical models. The adsorption kinetics followed the pseudo-second-order, Elovich, and Weber–Morris models, thus demonstrating that adsorption rates were not controlled by multiple processes. Adsorption equilibrium data fitted best with the Dubinin–Radushkevich model. Finally, a Fourier transform infrared spectroscopy analysis revealed the presence of brushite spectra bands after adsorption. The results of this study can help better understand the use of sanky peel as an adsorbent and good alternative for aqueous phosphate adsorption.


2009 ◽  
Vol 196 (12) ◽  
pp. 1547-1558 ◽  
Author(s):  
Rachdi Boussahel ◽  
Hassiba Irinislimane ◽  
Djamila Harik ◽  
Khadija Meriem Moussaoui

2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


RSC Advances ◽  
2020 ◽  
Vol 10 (70) ◽  
pp. 42688-42698
Author(s):  
Verónica Villacorta ◽  
César Augusto Barrero ◽  
María-Belén Turrión ◽  
Francisco Lafuente ◽  
Jean-Marc Greneche ◽  
...  

Morphologically-modified akaganeite nanoparticles adsorbed As3+, As5+, Sb3+ and Hg2+. Sb3+ was the better adsorbed pollutant, whereas Hg2+ was the least.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1312
Author(s):  
Dereje Tadesse Mekonnen ◽  
Esayas Alemayehu ◽  
Bernd Lennartz

The contamination of surface and groundwater with phosphate originating from industrial and household wastewater remains a serious environmental issue in low-income countries. Herein, phosphate removal from aqueous solutions was studied using low-cost volcanic rocks such as pumice (VPum) and scoria (VSco), obtained from the Ethiopian Great Rift Valley. Batch adsorption experiments were conducted using phosphate solutions with concentrations of 0.5 to 25 mg·L−1 to examine the adsorption kinetic as well as equilibrium conditions. The experimental adsorption data were tested by employing various equilibrium adsorption models, and the Freundlich and Dubinin-Radushkevich (D-R) isotherms best depicted the observations. The maximum phosphate adsorption capacities of VPum and VSco were calculated and found to be 294 mg·kg−1 and 169 mg·kg−1, respectively. A pseudo-second-order kinetic model best described the experimental data with a coefficient of correlation of R2 > 0.99 for both VPum and VSco; however, VPum showed a slightly better selectivity for phosphate removal than VSco. The presence of competitive anions markedly reduced the removal efficiency of phosphate from the aqueous solution. The adsorptive removal of phosphate was affected by competitive anions in the order: HCO3− >F− > SO4−2 > NO3− > Cl− for VPum and HCO3− > F− > Cl− > SO4−2 > NO3− for VSco. The results indicate that the readily available volcanic rocks have a good adsorptive capacity for phosphate and shall be considered in future studies as test materials for phosphate removal from water in technical-scale experiments.


Sign in / Sign up

Export Citation Format

Share Document