RP-HPLC method for quantitative estimation of Efinaconazole in topical microemulsion and microemulsion-based-gel formulations and in presence of its degradation products

2020 ◽  
Vol 155 ◽  
pp. 104753 ◽  
Author(s):  
Agrawal Vikas ◽  
Patel Rashmin ◽  
Patel Mrunali ◽  
Mishra Sandip ◽  
Thanki Kaushik
2019 ◽  
Vol 9 (o3) ◽  
Author(s):  
Imad Tarek Hanoon ◽  
Abed Mohammed Daheir AL-Joubory 2 ◽  
Marwa Mohamed Saied 3

A simple , specific, accurate and precise RP-HPLC method was developed for determination of Irbesartan (IRB) in pharmaceutical dosage forms in tablets products and sachet using symmetry (L 1 ) column at 30°C . The signal was detected at 225 nm. A mobile phase dissolve 0.5 g of buffer potassium phosphate in 100 ml distilled water and adjust pH 2.7 , methanol and acetonitrile at ratio (40 :30 :30 ) . and flow rate 1.2ml/min -1 at pH=7.2 a mobile phase The percent recovery was detected 101 % and the linearity of concentration was 10-50 µg.ml -1 and supported this method by using (FT.I.R.) spectrum method for organic spectrophotometer to prove the chemical structure of this drug and some physical properties . we are obtained the result is identical of other literature . The proposed method was applied successfully for determination of the IRB in tablets products.


2019 ◽  
Vol 35 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Somana Siva Prasad ◽  
G. V. Krishna Mohan ◽  
A. Naga Babu

In this study, a novel, simple and precise RP-HPLC method has been developed for the quantitative analysis of Lenalidomide (LLM) in pharmaceutical formulations using analytical quality by design approach. An X-bridge-C18 column (150 mm × 4.6 mm × 3.5 µ) with mobile phases containing a Potassium dihydrogen orthophosphate anhydrous buffer and methanol in the ratio of (90:10 v/v) and (35:65 v/v) are used for the estimation of LLM and its degradation products. The flow rate of 0.8 mL/min is maintained and all degradation studies are performed at 210 nm using photodiode array (PDA) detector. Method Validation is carried out according to International Council for Harmonisation (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The present developed RP-HPLC method shows the purity angle of peaks is less than their threshold angle, signifying that it to be suitable for stability studies. Hence, the developed method can be used for the successful separation of LLM and its impurities in the pharmaceutical dosage formulations.


Author(s):  
Gowramma Byran ◽  
Jenifer Ashwini ◽  
Kaviarasan Lakshmanan ◽  
Kalirajan Rajagopal ◽  
Gomathy Subramanian ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ramakrishna Kommana ◽  
Praveen Basappa

The present paper describes the development of quick stability indicating RP-HPLC method for the simultaneous estimation of codeine phosphate and chlorpheniramine maleate in the presence of its degradation products, generated from forced degradation studies. The developed method separates codeine phosphate and chlorpheniramine maleate in impurities/degradation products. Codeine phosphate and chlorpheniramine maleate and their combination drug product were exposed to acid, base, oxidation, dry heat, and photolytic stress conditions, and the stressed samples were analysed by proposed method. The proposed HPLC method utilizes the Shimadzu HPLC system on a Phenomenex C18 column (, 5 μ) using a mixture of 1% o-phosphoric acid in water : acetonitrile : methanol (78 : 10 : 12) mobile phase with pH adjusted to 3.0 in an isocratic elution mode at a flow rate of 1 mL/min, at 23°C with a load of 20 μL. The detection was carried out at 254 nm. The retention time of codeine phosphate and chlorpheniramine maleate was found to be around 3.47 min and 9.45 min, respectively. The method has been validated with respect to linearity, robustness, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ). The developed validated stability indicating HPLC method was found to be simple, accurate, and reproducible for the determination of instability of these drugs in bulk and commercial products.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Subrata Bhadra ◽  
Sreedam Chandra Das ◽  
Sumon Roy ◽  
Shamsul Arefeen ◽  
Abu Shara Shamsur Rouf

A simple, precise, specific, and accurate reversed phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for determination of vinpocetine in pure and pharmaceutical dosage forms. The different analytical performance parameters such as linearity, accuracy, specificity, precision, and sensitivity (limit of detection and limit of quantitation) were determined according to International Conference on Harmonization ICH Q2 (R1) guidelines. RP-HPLC was conducted on Zorbax C18 (150 mm length × 4.6 mm ID, 5 μm) column. The mobile phase was consisting of buffer (containing 1.54% w/v ammonium acetate solution) and acetonitrile in the ratio (40 : 60, v/v), and the flow rate was maintained at 1.0 mLmin−1. Vinpocetine was monitored using Agilent 1200 series equipped with photo diode array detector (λ = 280 nm). Linearity was observed in concentration range of 160–240 μgmL−1, and correlation coefficient was found excellent (R2 = 0.999). All the system suitability parameters were found within the range. The proposed method is rapid, cost-effective and can be used as a quality-control tool for routine quantitative analysis of vinpocetine in pure and pharmaceutical dosage forms.


Author(s):  
Alex O. Okaru ◽  
Kennedy O. Abuga ◽  
Franco N. Kamau ◽  
Stanley N. Ndwigah ◽  
Dirk W. Lachenmeier

A simple, isocratic and robust RP-HPLC method for the analysis of azithromycin was developed, validated and applied for the analysis of bulk samples, tablets and suspensions. The optimum chromatographic conditions for separation were established as mobile phase comprising of acetonitrile-0.1M KH2PO4 pH 6.5-0.1M tetrabutyl ammonium hydroxide pH 6.5-water (25:15:1:59% v/v/v/v) delivered at a flow rate of 1.0 ml/min. The stationary phase consisted of reverse-phase XTerra® (250 mm× 4.6 mm i.d., 5 µm particle size) maintained at a temperature of 43 °C with a UV detection at 215 nm. The method was found to be linear in the range 50-150% (r2=0.997). The limits of detection and quantification were found to be 0.02% (20 µg) and 0.078% (78 µg) respectively with a 100.7% recovery of azithromycin. Degradation products of azithromycin in acidic and oxidative environments at 37 °C were resolved from the active pharmaceutical ingredient and thus the method is fit for the purpose of drug stability confirmation.


2020 ◽  
Vol 11 (1) ◽  
pp. 781-789
Author(s):  
Sriram Valavala ◽  
Nareshvarma Seelam ◽  
Subbaiah Tondepu ◽  
Suresh Kandagatla

The present study aims to develop a simple, accurate and specific stability-indicating RP-HPLC technique for the analysis of metoclopramide in the presence of its stress degradation products and characterization of degradation compounds by LC-MS/MS analysis. As per ICH Q1A-R2 guidelines, the drug was exposed to acid hydrolytic stress condition. Three degradation products were formed for MCP in acid hydrolysis. The liquid chromatography was processed on a Luna C18-(2) 100A,250×4.6mm 5micron column using an isocratic mobile phase consisting of 0.1% formic acid in water-acetonitrile (20:80, v/v) by adjusting the mobile phase at 1 ml/min flow rate with wavelength detection at 273 nm. The developed procedure was applied to LC-MS/MS (liquid chromatography-tandem mass spectrometry) for the characterization of all the degradant components. Total new three degradation compounds were recognized and identified by LC-MS/MS. The developed RP-HPLC technique was validated as per the ICH Q2-R1 guidelines. Limit of detection and limit of quantification values of MCP were evaluated from the linearity graph and were found to be 5.23 µg/ml and 17.44 µg/ml. Accuracy study was established at 80.0, 100.0 and 120.0 µg/ml concentration levels and the findings were found in the range of 98.4% - 101.8%. The linearity of the technique was assessed over the drug concentration range of 50.0 µg/ml to 250.0 µg/ml and the regression equation, slope and correlation coefficient values were found to be y = 10618x + 1623.2, 10618 and 0.9996 respectively. The developed technique was uninterruptedly applied for the quantification of metoclopramide inactive pharmaceuticals.


Sign in / Sign up

Export Citation Format

Share Document