Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite

2021 ◽  
Vol 161 ◽  
pp. 105751 ◽  
Author(s):  
Gamze Emir ◽  
Yusuf Dilgin ◽  
Almira Ramanaviciene ◽  
Arunas Ramanavicius
2012 ◽  
Vol 70 ◽  
pp. 278-285 ◽  
Author(s):  
Hairong Jiang ◽  
Aifeng Zhang ◽  
Yanan Sun ◽  
Xiaoning Ru ◽  
Dongtao Ge ◽  
...  

Talanta ◽  
2017 ◽  
Vol 171 ◽  
pp. 204-212 ◽  
Author(s):  
Asta Kausaite-Minkstimiene ◽  
Ruta Simanaityte ◽  
Almira Ramanaviciene ◽  
Laura Glumbokaite ◽  
Arunas Ramanavicius

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 948
Author(s):  
Anton Popov ◽  
Ruta Aukstakojyte ◽  
Justina Gaidukevic ◽  
Viktorija Lisyte ◽  
Asta Kausaite-Minkstimiene ◽  
...  

The control of glucose concentration is a crucial factor in clinical diagnosis and the food industry. Electrochemical biosensors based on reduced graphene oxide (rGO) and conducting polymers have a high potential for practical application. A novel thermal reduction protocol of graphene oxide (GO) in the presence of malonic acid was applied for the synthesis of rGO. The rGO was characterized by scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and Raman spectroscopy. rGO in combination with polyaniline (PANI), Nafion, and glucose oxidase (GOx) was used to develop an amperometric glucose biosensor. A graphite rod (GR) electrode premodified with a dispersion of PANI nanostructures and rGO, Nafion, and GOx was proposed as the working electrode of the biosensor. The optimal ratio of PANI and rGO in the dispersion used as a matrix for GOx immobilization was equal to 1:10. The developed glucose biosensor was characterized by a wide linear range (from 0.5 to 50 mM), low limit of detection (0.089 mM), good selectivity, reproducibility, and stability. Therefore, the developed biosensor is suitable for glucose determination in human serum. The PANI nanostructure and rGO dispersion is a promising material for the construction of electrochemical glucose biosensors.


2011 ◽  
Vol E94-C (12) ◽  
pp. 1855-1857
Author(s):  
Huihui WANG ◽  
Hitoshi OHNUKI ◽  
Hideaki ENDO ◽  
Mitsuru IZUMI

2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


2019 ◽  
Vol 9 (2) ◽  
pp. 157-160
Author(s):  
Ali Hasani

Background: Laser ablation method has high-yield and pure SWCNHs. On the other hand, arc discharge methods have low-cost production of SWCNHs. However, these techniques have more desirable features, they need special expertness to use high power laser or high current discharge that either of them produces very high temperature. As for the researches, the temperatures of these techniques are higher than 4727°C to vaporize the graphite. So, to become aware of the advantages of SWCNHs, it is necessary to find a new way to synthesize SWCNHs at a lower temperature. In other words, reaction field can be expandable at a moderate temperature. This paper reports a new way to synthesize SWCNHs at an extremely reduced temperature. Methods: According to this study, the role of N2 is the protection of the copper holder supporting the graphite rod by increasing heat transfer from the holder. After the current of 70 A was supplied to the system, the temperature of graphite rod was raised to 1600°C. It is obvious that this temperature is somehow higher than the melting point of palladium, 1555°C, and much lower than graphite melting point, 3497°C. Results: Based on the results, there are transitional precursors simultaneous with the SWCNHs. This composition can be created by distortion of the primary SWCNTs at the higher temperature. Subsequently, each SWCNTs have a tendency to be broken into individual horns. With increasing the concentration of the free horns, bud-like SWCNHs can be produced. Moreover, there are individual horns almost separated from the mass of single wall carbon nanohorns. This structure is not common in SWCNHs synthesized by the usual method such as arc discharge or laser ablation. Through these regular techniques, SWCNHs are synthesized as cumulative particles with diameters about 30-150 nm. Conclusion: A simple heating is needed for SWCNTs transformation to SWCNHs with the presence of palladium as catalyst. The well-thought-out mechanism for this transformation is that SWCNTs were initially changed to highly curled shape, and after that were formed into small independent horns. The other rout to synthesize SWCNHs is the pyrolysis of palm olein at 950°C with the assistance of zinc nitrate and ferrocene. Palm olein was used as a promising, bio-renewable and inexpensive carbon source for the production of carbon nanohorns.


The Analyst ◽  
2019 ◽  
Vol 144 (6) ◽  
pp. 1960-1967 ◽  
Author(s):  
Chao Chen ◽  
Pengcheng Zhao ◽  
Meijun Ni ◽  
Chunyan Li ◽  
Yixi Xie ◽  
...  

A temperature-induced sensing film consisting of poly(N-vinylcaprolactam) (PVCL), graphene oxide (GO) and glucose oxidase (GOD) was fabricated and used to modify a glassy carbon electrode (GCE).


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 157
Author(s):  
Bárbara V. M. Silva ◽  
Marli T. Cordeiro ◽  
Marco A. B. Rodrigues ◽  
Ernesto T. A. Marques ◽  
Rosa F. Dutra

Zika virus (ZIKV) is a mosquito-borne infection, predominant in tropical and subtropical regions causing international concern due to the ZIKV disease having been associated with congenital disabilities, especially microcephaly and other congenital abnormalities in the fetus and newborns. Development of strategies that minimize the devastating impact by monitoring and preventing ZIKV transmission through sexual intercourse, especially in pregnant women, since no vaccine is yet available for the prevention or treatment, is critically important. ZIKV infection is generally asymptomatic and cross-reactivity with dengue virus (DENV) is a global concern. An innovative screen-printed electrode (SPE) was developed for amperometric detection of the non-structural protein (NS2B) of ZIKV by exploring the intrinsic redox catalytic activity of Prussian blue (PB), incorporated into a carbon nanotube–polypyrrole composite. Thus, this immunosensor has the advantage of electrochemical detection without adding any redox-probe solution (probe-less detection), allowing a point-of-care diagnosis. It was responsive to serum samples of only ZIKV positive patients and non-responsive to negative ZIKV patients, even if the sample was DENV positive, indicating a possible differential diagnosis between them by NS2B. All samples used here were confirmed by CDC protocols, and immunosensor responses were also checked in the supernatant of C6/36 and in Vero cell cultures infected with ZIKV.


Sign in / Sign up

Export Citation Format

Share Document