Deblocking effect of carbonates and hydrogen carbonates in the alkali form zeolites with narrow pores

2014 ◽  
Vol 200 ◽  
pp. 35-45 ◽  
Author(s):  
A.V. Larin
Keyword(s):  
1982 ◽  
Vol 47 (12) ◽  
pp. 3348-3361 ◽  
Author(s):  
Erich Lippert ◽  
Karel Mocek ◽  
Emerich Erdös

The reactivity of the anhydrous carbonates of alkaline metals with sulphur dioxide has been studied experimentally in dependence both on the nature of the cation and on the way of preparation of the anhydrous carbonate. The carbonates were prepared either by thermal decomposition of hydrogen carbonates or by thermal dehydration of carbonate hydrates. The carbonates of lithium, sodium, potassium, rubidium and caesium have been investigated. Kinetic measurements were carried out in a flow reactor in the integral regime at 423 K under atmospheric pressure, with a gas containing 0.2 vol.% of sulphur dioxide and 2.0 vol.% of water vapour in the nitrogen as a carrier gas. The reactivities have been compared on the basis of time dependence of the conversion of carbonate to sulphite.


Author(s):  
Natalia A. Mitina ◽  
Vasiliy A. Lotov ◽  
Margarita A. Kovaleva ◽  
Natali O. Kopanitsa

Based on the new hydraulic magnesia binder, the compositions of the peat-containing composite material have been proposed and investigated. Hydraulic magnesia binder is an astringent composition of hydration-reaction hardening, which consists of an active caustic magnesia powder and a mixing fluid. As the fluid mixing an aqueous solution of magnesium bicarbonate Mg(HCO3)2 with a concentration of 13 g/l was used. Hardening forms water-insoluble products - magnesium hydroxide Mg(OH)2 and magnesium bicarbonates of general formula MgCO3·zMg(OH)2·nH2O, which makes it possible to harden and used products based on such a binder as in the air, and in water. The use of peat as a filler of the developed compositions will make it possible to obtain lightweight waterproof materials and products of heat-insulating purpose. It has been shown that the peat-and-magnesian compositions of all compositions have a hydration hardening coefficient of more than 1.0, which indicates intensification of the hydration and hardening processes in water conditions in comparison with air and large strength parameters. Using XRD the phase composition of peat products and peat- magnesium hardening compositions was established. Thermal analysis showed the presence of magnesium hydrogencarbonates in samples of compositions that are in the form of slightly crystallized neoplasms. Investigations by electron microscopy confirmed the presence of hydrocarbons such as magnesium particles dipingite Mg5(CO3)4(OH)2·5H2O and hydromagnesite Mg5(CO3)4(OH)2·4H2O in the form of thin plates with the vertical direction of crystallization. Increased water resistance of compositions based on hydraulic magnesia binder with non-water-resistant filler peat is due to mineralization of peat particles due to their impregnation with a solution of magnesium bicarbonate and the formation of water-soluble magnesium hydrogen carbonates in the loose porous structure of peat.


2011 ◽  
Vol 52 (No. 8) ◽  
pp. 345-352 ◽  
Author(s):  
G. Mühlbachová ◽  
P. Tlustoš

The effects of liming by CaO and CaCO<sub>3</sub> on soil microbial characteristics were studied during laboratory incubation of long-term contaminated arable and grassland soils from the vicinity of lead smelter near Př&iacute;bram (Czech Republic). The CaO treatment showed significant negative effects on soil microbial biomass C and its respiratory activity in both studied soils, despite the fact that microbial biomass C in the grassland soil increased sharply during the first day of incubation. The metabolic quotient (qCO<sub>2</sub>) in soils amended by CaO showed greater values than the control from the second day of incubation, indicating a possible stress of soil microbial pool. The vulnerability of organic matter to CaO could be indicated by the availability of K<sub>2</sub>SO<sub>4</sub>-extractable carbon that increased sharply, particularly at the beginning of the experiment. The amendment of soils by CaCO<sub>3 </sub>moderately increased the soil microbial biomass. The respiratory activity and qCO<sub>2</sub> increased sharply during the first day of incubation, however it is not possible to ascribe them only to microbial activities, but also to CaCO<sub>3</sub> decomposition in hydrogen carbonates, water and CO<sub>2</sub>. The pH values increased more sharply under CaO treatment in comparison to CaCO<sub>3</sub> treatment. The improvement of soil pH by CaCO<sub>3</sub> could be therefore more convenient for soil microbial communities.


2020 ◽  
Vol 283 ◽  
pp. 121139
Author(s):  
Riko Iizuka-Oku ◽  
Weibin Gui ◽  
Kazuki Komatsu ◽  
Takehiko Yagi ◽  
Hiroyuki Kagi

2011 ◽  
Vol 66 (4) ◽  
pp. 407-418 ◽  
Author(s):  
Ioannis Tiritiris ◽  
Jochen Mezger ◽  
Edmont V. Stoyanov ◽  
Willi Kantlehner

The guanidines 1, 4, 6, 8, 10, and 12 react with carbon dioxide in the presence of traces of water to give the guanidinium hydrogen carbonates 3, 5, 7, 9, 11, and 13. The crystal structures of the salts reveal the presence of centrosymmetric hydrogen carbonate ion dimers, which are connected by O-H・ ・ ・O hydrogen bonds. Additionally the cations are associated with the anions via N-H・ ・ ・O hydrogen bonds. The reaction of the N-(aminoalkyl)guanidine 14 with CO2 in the presence of traces of water affords a stable hygroscopic carbamic acid as the hydrogen carbonate salt 15. In the crystal structure of 15 the hydrogen carbonate ion is connected with the carbamic acid moiety by strong O-H・ ・ ・O hydrogen bonds


Sign in / Sign up

Export Citation Format

Share Document