Iron (III)-doped, ionic liquid matrix-immobilized, mesoporous silica nanoparticles: Application as recyclable catalyst for synthesis of pyrimidines in water

2016 ◽  
Vol 227 ◽  
pp. 23-30 ◽  
Author(s):  
Hossein Naeimi ◽  
Vajihe Nejadshafiee ◽  
Mohammad Reza Islami
2020 ◽  
Vol 3 (03) ◽  
pp. 54-64
Author(s):  
Roya Ashori ◽  
Seyed Alireza Hajiseyed Mirzahosseini

Molybdenum (Mo) ions enter to human body from the diet or drinking waters and have a potentially toxic effect on humans. The thiol-functionalized mesoporous silica nanoparticles (HS-MSNPs) were used for determination and speciation of Mo (II, VI) in human biological samples by dispersive ionic liquid-micro-solid phase extraction (DIL-μ-SPE) coupled to electrothermal atomic absorption spectrometry (ET-AAS). Firstly, the mixture of HS-MSNPs (15 mg), the hydrophobic ionic liquid (1-Hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate; [HMIM][T(PFE)PF3]) and acetone injected into 10 mL of human blood and serum samples. After shaking for 5 min, the Mo(II) and Mo(VI) ions were extracted with the thiol group of MSNPs at pH 6 and 2, respectively, and collected through IL at the bottom of the conical tube by centrifuging. Then, the MO(II,VI) ions were back-extracted from HS-MSNPs with elent based on changing pH, and remained solutions were determined by ET-AAS after dilution with DW up to 0.5 mL, separately.


2019 ◽  
Vol 2 (01) ◽  
pp. 5-14 ◽  
Author(s):  
Parisa Paydar ◽  
Ali Faghihi Zarandi

Chronic effect of manganese exposure to humans caused the dysfunction of nervous system. An applied sorbent based on hydrophobic ionic liquid passed on mesoporous silica nanoparticles was used for adsorption/removal of manganese dust (Mn) from workplace air by solid phase adsorption method. In bench scale set up, 5 mL of standard solution of nitrate and oxide of Mn (0.2-5 mg L-1) was used for generation of manganese dust in pure air by drying procedure, and then was passed through column of IL/MSNPs by SKC pump with flow rate  of 200-500 mL min-1 by SKC pump. The Mn particles separated from column of IL/MSNPs by irrigation of nitric acid solution before determined by F-AAS/ET-AAS. In optimized conditions, the adsorption capacity of MSNPs and IL/MSNPs for Mn removal from air in batch system (1 Li) was obtained 118.5 mg g-1 and 216.2 mg g-1, respectively.


2019 ◽  
Vol 16 (1) ◽  
pp. 136-144 ◽  
Author(s):  
Vajihe Nejadshafiee ◽  
Hossein Naeimi

Aim and Objective: A novel and convenient transformation for the synthesis of benzodiazepines has been developed via catalytic cyclization reaction using ionic liquid supported on mesoporous silica nanoparticles- imprinted iron metal (Fe-MCM-41-IL) as a recyclable catalyst under mild conditions. Materials and Methods: For preparation of Fe-MCM-41-IL, FeCl3·6H2O was added to a mixture of distilled water, CTAB and NaOH aqueous solution. The tetraethyl orthosilicate was dropped into the solution under stirring. The product was separated, washed, and dried. The solid product was collected and calcined. Then, to a solution of β-hydroxy-1,2,3-triazole in toluene, 3-chloropropyltrimethoxysilane was added and the mixture was refluxed. The Conc. H2SO4 was added dropwise into the above solution and stirred. For immobilization of IL onto Fe-MCM-41, the solution IL was added to Fe-MCM-41 and was refluxed for the production of the Fe- MCM-41. Following this, benzodiazepines were synthesized using Fe-MCM-41-IL as a catalyst. </P><P> Results: The Fe-MCM-41-IL was prepared and characterized by a different analysis. The activity of the prepared catalyst as the above described was tested in the model reaction of o-phenyldiamine, tetronic acid, and different aldehydes under room temperature in ethanol solvent. Also, the catalyst could be recovered for five cycles. Conclusion: We developed a novel nanocatalyst for the synthesis of benzodiazepines in excellent yields. Fe- MCM-41-IL as a catalyst has advantages such as: environmental friendliness, reusability and easy recovery of the catalyst using an external magnet.


2016 ◽  
Vol 52 (23) ◽  
pp. 4369-4372 ◽  
Author(s):  
Yang Li ◽  
Ka-Wai Wong ◽  
Ka-Ming Ng

We report a novel hybrid electrolyte based on mesoporous silica nanoparticles decorated with an ionic liquid, which exhibits a superior lithium ion transference number of >0.8, and an excellent electrochemical window of >5 V with attractive ionic conductivity.


2020 ◽  
Vol 24 (3) ◽  
pp. 289-302 ◽  
Author(s):  
Nurul Syahira Zaharudin ◽  
Eleen Dayana Mohamed Isa ◽  
Haslina Ahmad ◽  
Mohd Basyaruddin Abdul Rahman ◽  
Khairulazhar Jumbri

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Eleen Dayana Mohamed Isa ◽  
Haslina Ahmad ◽  
Mohd Basyaruddin Abdul Rahman

Optimization is a process utilized to discover the best condition to generate the best possible outcome. One of the common optimization method used in the field of chemistry is response surface methodology (RSM). This method consists of mathematical and statistical techniques which relate the responses with the variables of interest. There are many experimental designs in RSM, and one of the most common one is the Box-Behnken design (BBD). In this work, BBD was employed to analyze the main effects and interactions of the reaction temperature, amount of template, and amount of triethanolamine (TEA) on the two responses which are the surface area (SA) and particle size (PS) of ionic liquid templated mesoporous silica nanoparticles (MSNs). It was found that the SA and PS were fitted with linear and quadratic models, respectively. MSNs with the highest surface area (999.051 m2 g-1) was chosen for the application of drug delivery; thus, drug loading and drug release experiments were conducted. From these studies, it was found that 37% of drug (quercetin) was successfully encapsulated in MSN and, in 48 hours, 32% of the drug was released.


Sign in / Sign up

Export Citation Format

Share Document