Evaluation of parameters affecting quantitative detection of Escherichia coli O157 in enriched water samples using immunomagnetic electrochemiluminescence

2003 ◽  
Vol 55 (3) ◽  
pp. 717-725 ◽  
Author(s):  
Daniel R Shelton ◽  
Jo Ann S Van Kessel ◽  
Marian R Wachtel ◽  
Kenneth T Belt ◽  
Jeffrey S Karns
2019 ◽  
Vol 11 (11) ◽  
pp. 1475-1482 ◽  
Author(s):  
Xiaoyan Mo ◽  
Zunyi Wu ◽  
Jianfeng Huang ◽  
Guangying Zhao ◽  
Wenchao Dou

An electrochemical immunosensor was constructed for the detection of E. coli O157:H7 using Au@Pt, rGO and regenerative leucoemeraldine PANI/AuNPs.


2009 ◽  
Vol 8 (2) ◽  
pp. 374-386 ◽  
Author(s):  
Cassandra C. Jokinen ◽  
Hans Schreier ◽  
William Mauro ◽  
Eduardo Taboada ◽  
Judith L. Isaac-Renton ◽  
...  

In this study, we wished to assess the prevalence and determine the sources of three zoonotic bacterial pathogens (Salmonella, Campylobacter, and Escherichia coli O157:H7) in the Salmon River watershed in southwestern British Columbia. Surface water, sewage, and animal faecal samples were collected from the watershed. Selective bacterial culture and PCR techniques were used to isolate these three pathogens and indicator bacteria from these samples and characterize them. Campylobacter was the most prevalent pathogen in all samples, followed by Salmonella, and E. coli O157:H7. E. coli O157:H7 and Salmonella isolation rates from water, as well as faecal coliform densities correlated positively with precipitation, while Campylobacter isolation rates correlated negatively with precipitation. Analysis of DNA extracted from water samples for the presence of Bacteroides host-species markers, and comparisons of C. jejuniflaA-RFLP types and Salmonella serovars from faecal and water samples provided evidence that human sewage and specific domestic and wild animal species were sources of these pathogens; however, in most cases the source could not be determined or more than one source was possible. The frequent isolation of these zoonotic pathogens in the Salmon River highlights the risks to human health associated with intentional and unintentional consumption of untreated surface waters.


2019 ◽  
Vol 12 (10) ◽  
pp. 1584-1590
Author(s):  
Maria Kristiani Epi Goma ◽  
Alvita Indraswari ◽  
Aris Haryanto ◽  
Dyah Ayu Widiasih

Background and Aim: The feasibility assessment of food products on the market becomes one of the milestones of food safety. The quality of food safety of animal origin especially pork need to get attention and more real action from the parties related and concerned. Since pork is also a source of transmission for the contagion of foodborne disease so that the study of the existence of several agents in the pork and its products become the benchmark of safety level. This study aimed to isolate, identify, and detect the Shiga toxin 2a (stx2a) gene from Escherichia coli O157:H7 in pork, pig feces, and clean water in the Jagalan slaughterhouse. Materials and Methods: A total of 70 samples consisting of 32 pork samples, 32 pig fecal samples, and 6 clean water samples were used to isolate and identify E. coli O157:H7 and the stx2a gene. Isolation and identification of E. coli O157:H7 were performed using culture on eosin methylene blue agar and Sorbitol-MacConkey agar media and confirmed molecularly with polymerase chain reaction to amplify the target genes rfbE (317 bp) and fliC (381 bp). The isolates, which were identified as E. coli O157:H7, were investigated for the stx2a gene (553 bp). Results: The results of this study show that of the total collected samples, E. coli O157:H7 was 28.6% in Jagalan slaughterhouse and consisted of 25% of pork samples, 31.25% of pig fecal samples, and 33.3% of clean water samples. The isolates that were identified to be E. coli O157:H7 mostly contained the stx2a gene, which was equal to 75%, and consisted of seven isolates from pork samples, seven isolates from fecal samples, and one isolate from clean water samples. Conclusion: E. coli O157:H7 was found in 28.6% of pork, pig feces, and clean water in Jagalan slaughterhouse and 75% of identified E. coli O157:H7 contained the stx2a gene.


Sign in / Sign up

Export Citation Format

Share Document