scholarly journals The occurrence and sources of Campylobacter spp., Salmonellaenterica and Escherichia coli O157:H7 in the Salmon River, British Columbia, Canada

2009 ◽  
Vol 8 (2) ◽  
pp. 374-386 ◽  
Author(s):  
Cassandra C. Jokinen ◽  
Hans Schreier ◽  
William Mauro ◽  
Eduardo Taboada ◽  
Judith L. Isaac-Renton ◽  
...  

In this study, we wished to assess the prevalence and determine the sources of three zoonotic bacterial pathogens (Salmonella, Campylobacter, and Escherichia coli O157:H7) in the Salmon River watershed in southwestern British Columbia. Surface water, sewage, and animal faecal samples were collected from the watershed. Selective bacterial culture and PCR techniques were used to isolate these three pathogens and indicator bacteria from these samples and characterize them. Campylobacter was the most prevalent pathogen in all samples, followed by Salmonella, and E. coli O157:H7. E. coli O157:H7 and Salmonella isolation rates from water, as well as faecal coliform densities correlated positively with precipitation, while Campylobacter isolation rates correlated negatively with precipitation. Analysis of DNA extracted from water samples for the presence of Bacteroides host-species markers, and comparisons of C. jejuniflaA-RFLP types and Salmonella serovars from faecal and water samples provided evidence that human sewage and specific domestic and wild animal species were sources of these pathogens; however, in most cases the source could not be determined or more than one source was possible. The frequent isolation of these zoonotic pathogens in the Salmon River highlights the risks to human health associated with intentional and unintentional consumption of untreated surface waters.

Author(s):  
E. Seker ◽  
H. Yardimci

Three hundred rectal faecal samples and 213 raw milk samples obtained from the tanks and containers were examined using standard cultural methods. Escherichia coli O157:H7 was isolated from 11 (3.7 %) of 300 faecal samples and 3 (1.4 %) of 213 raw milk samples. It was determined that 8 (73 %) of E. coli O157:H7 strains isolated from faecal samples originated from water buffaloes younger than 2 years of age and 3 (27 %) from 2-year-old and older water buffaloes. This is the 1st isolation of Escherichia coli O157:H7 from faecal and milk samples of water buffaloes in Turkey.


2019 ◽  
Vol 12 (10) ◽  
pp. 1584-1590
Author(s):  
Maria Kristiani Epi Goma ◽  
Alvita Indraswari ◽  
Aris Haryanto ◽  
Dyah Ayu Widiasih

Background and Aim: The feasibility assessment of food products on the market becomes one of the milestones of food safety. The quality of food safety of animal origin especially pork need to get attention and more real action from the parties related and concerned. Since pork is also a source of transmission for the contagion of foodborne disease so that the study of the existence of several agents in the pork and its products become the benchmark of safety level. This study aimed to isolate, identify, and detect the Shiga toxin 2a (stx2a) gene from Escherichia coli O157:H7 in pork, pig feces, and clean water in the Jagalan slaughterhouse. Materials and Methods: A total of 70 samples consisting of 32 pork samples, 32 pig fecal samples, and 6 clean water samples were used to isolate and identify E. coli O157:H7 and the stx2a gene. Isolation and identification of E. coli O157:H7 were performed using culture on eosin methylene blue agar and Sorbitol-MacConkey agar media and confirmed molecularly with polymerase chain reaction to amplify the target genes rfbE (317 bp) and fliC (381 bp). The isolates, which were identified as E. coli O157:H7, were investigated for the stx2a gene (553 bp). Results: The results of this study show that of the total collected samples, E. coli O157:H7 was 28.6% in Jagalan slaughterhouse and consisted of 25% of pork samples, 31.25% of pig fecal samples, and 33.3% of clean water samples. The isolates that were identified to be E. coli O157:H7 mostly contained the stx2a gene, which was equal to 75%, and consisted of seven isolates from pork samples, seven isolates from fecal samples, and one isolate from clean water samples. Conclusion: E. coli O157:H7 was found in 28.6% of pork, pig feces, and clean water in Jagalan slaughterhouse and 75% of identified E. coli O157:H7 contained the stx2a gene.


2002 ◽  
Vol 2 (3) ◽  
pp. 29-38 ◽  
Author(s):  
E.E. Müller ◽  
M.B. Taylor ◽  
W.O.K. Grabow ◽  
M.M. Ehlers

Toxin-converting bacteriophages encoding the Stx2 gene were induced from strains of Escherichia coli O157:H7 isolated from sewage, bovine and porcine faeces. Toxin synthesis can be stimulated by the induction of integrated toxin-converting phages from the host E. coli O157:H7 organism by ultra-violet (UV) exposure. The UV-mediated DNA damage of E. coli O157:H7 triggers a bacterial SOS response resulting in phage release. Free ranging phages outside their E. coli O157:H7 hosts were detected but could not be isolated directly from environmental samples such as sewage and river water. E. coli O157:H7 colonies carrying the genes coding for Stx2 were isolated from 1 sewage sample (0.76% of positive samples), 8 cattle faecal samples (16.67% of positive samples) and 2 pig faecal samples (14.28% of positive samples). Characterization of E. coli O157:H7 was done by repetitive sequence analysis using ERIC-PCR to determine the relationships between the individual E. coli O157:H7 strains. The ERIC-PCR analysis revealed distinct patterns for all E. coli O157:H7 strains with some small differences between the strains. DNA sequencing of some of the E. coli O157:H7 positive isolates carrying the Stx2 genes were performed confirming the amplified DNA nucleotide sequences of Stx2. Electron microscopic analysis revealed, for the first time in South Africa, that Stx2-converting phages induced from E. coli O157:H7 have different morphologies to that of phage lambda which was previously described. The role of the induced integrated Stx2 phages in natural environments such as river and dam water remains unclear. With the induction of Stx2-converting phages from environmental E. coli O157:H7 isolates, it is now possible to determine the potential of these phages to convert non-pathogenic E. coli strains and other enterobacteriaciae into pathogenic strains.


2013 ◽  
Vol 59 (3) ◽  
pp. 175-182 ◽  
Author(s):  
Ganyu Gu ◽  
Zhiyao Luo ◽  
Juan M. Cevallos-Cevallos ◽  
Paige Adams ◽  
George Vellidis ◽  
...  

Outbreaks of enteritis caused by Escherichia coli O157 associated with fresh produce have resulted in questions about the safety of irrigation water; however, associated risks have not been systematically evaluated. In this study, the occurrence and distribution of the human pathogen E. coli O157 from vegetable irrigation ponds within the Suwannee River Watershed in Georgia were investigated, and the relationship to environmental factors was analyzed. Surface and subsurface water samples were collected monthly from 10 vegetable irrigation ponds from March 2011 to February 2012. Escherichia coli O157 was isolated from enriched filtrates on CHROMagar and sorbitol MacConkey agar media and confirmed by an agglutination test. Presence of virulence genes stx1, stx2 , and eae was tested by polymerase chain reaction. In addition, 27 environmental variables of the sampled ponds were measured. Denaturing gradient gel electrophoresis was conducted for the analysis of bacterial communities in the water samples. Biserial correlation coefficients were calculated to evaluate the log10 colony-forming unit per millilitre correlations between the environmental factors and the occurrence of E. coli O157. Stepwise and canonical discriminant analyses were used to determine the factors that were associated with the presence and absence of E. coli O157 in water samples. All 10 ponds were positive for E. coli O157 some of the time, mainly in summer and fall of 2011. The temporal distribution of this bacterium differed among the 10 ponds. Temperature, rainfall, populations of fecal coliform, and culturable bacteria were positively correlated with the occurrence of E. coli O157 (P < 0.05), while the total nitrogen concentration, oxidation–reduction potential, and dissolved oxygen concentration were negatively correlated with the occurrence of this pathogen (P < 0.05). Temperature and rainfall were the most important factors contributing to the discrimination between samples with and without E. coli O157, followed by bacterial diversity and culturable bacteria population density. Bacterial numbers and diversity, including fecal coliforms and E. coli O157, increased after rainfall (and possibly runoff from pond margins) in periods with relatively high temperatures, suggesting that prevention of runoff may be important to minimize the risk of enteric pathogens in irrigation ponds.


1999 ◽  
Vol 123 (2) ◽  
pp. 291-298 ◽  
Author(s):  
W. W. LAEGREID ◽  
R. O. ELDER ◽  
J. E. KEEN

This study was designed to determine the prevalence of Escherichia coli O157:H7 infection of beef calves at weaning, prior to arrival at the feedlot or mixing with cattle from other sources. Fifteen range cow-calf herds, which weaned calves in October and November, were sampled in Kansas, Missouri, Montana, Nebraska and South Dakota. Faecal culture for E. coli O157:H7 was performed and anti-O157 serum antibody titres were determined by blocking ELISA. Thirteen of the 15 herds (87%) were found to have at least one positive isolation of E. coli O157:H7 in faecal samples. Within positive herds, prevalence ranged from 1·7–20·0%, with an average of 7·4±6·2% s.d. of individual animals shedding E. coli O157:H7 in faeces. All herds had high prevalence of anti-O157 antibodies, ranging 63–100% of individuals within herds seropositive. This study indicates that E. coli O157:H7 infection before weaning, prior to entry into feedlots, is widespread. Furthermore, serologic evidence suggests that most calves (83%) and all herds (100%) have been exposed to E. coli O157.


2006 ◽  
Vol 69 (9) ◽  
pp. 2248-2252 ◽  
Author(s):  
MARY ANNE ROSHNI AMALARADJOU ◽  
THIRUNAVUKKARASU ANNAMALAI ◽  
PATRICK MAREK ◽  
PEDRAM REZAMAND ◽  
DAVID SCHREIBER ◽  
...  

Escherichia coli O157:H7 is an important foodborne pathogen. Cattle serve as one of the major reservoirs of E. coli O157:H7, excreting the pathogen in feces. Environmental persistence of E. coli O157:H7 is critical in its epidemiology on far MS, and the pathogen has been isolated from cattle water troughs. Thus, there is a need for an effective method for killing E. coli O157:H7 in cattle drinking water. In this study, the efficacy of sodium caprylate for killing E. coli O157:H7 in cattle drinking water was investigated. A four-strain mixture of E. coli O157:H7 was inoculated (6.0 log CFU/ml) into 100-ml samples of well water containing 0, 75, 100, or 120 mM sodium caprylate. Water samples containing 1% (wt/vol) bovine feces or feed also were included. The samples were incubated at 21 or 8°C for 21 days. Water samples were analyzed for viable E. coli O157:H7 on days 0, 1, 3, 5, and 7 and weekly thereafter. Triplicate samples of each treatment and control were included, and the study was repeated twice. The magnitude of E. coli O157:H7 inactivation in water significantly increased (P &lt; 0.01) with increases in caprylate concentration and storage temperature. At 120 mM, sodium caprylate completely inactivated E. coli O157:H7 in all the samples after 1 to 20 days, depending on the treatments. The presence of feces or feed also had a significant effect (P &lt; 0.01) on the antibacterial property of caprylate; the presence of feces decreased the antibacterial effect, whereas addition of feed enhanced the effect. These results indicate that sodium caprylate is effective in killing E. coli O157:H7 in cattle drinking water, but detailed cattle palatability studies of water containing caprylate are necessary.


1998 ◽  
Vol 120 (1) ◽  
pp. 21-28 ◽  
Author(s):  
L. VOLD ◽  
B. KLUNGSETH JOHANSEN ◽  
H. KRUSE ◽  
E. SKJERVE ◽  
Y. WASTESON

To investigate if there is a reservoir of Escherichia coli O157 in Norwegian cattle, faecal samples from 197 cattle herds were screened for E. coli O157 by the use of immunomagnetic separation (IMS) and PCR during the 1995 grazing season. Six E. coli O157[ratio ]H-isolates were detected in two herds, one isolate in one and five in the other. The isolates carried the stx1, stx2, and eae genes, and a 90 MDa virulence plasmid. They were toxinogenic in a Vero cell assay. From 57 other herds, 137 faecal samples were positive for stx1 and/or stx2 genes detected by PCR run directly on IMS-isolated material. Among these samples, stx2 were the most widely distributed toxin encoding genes. No difference was found among milking cows and heifers in the rate of stx1 and/or stx2 in positive samples.


2018 ◽  
Vol 19 (4) ◽  
pp. 1246-1252
Author(s):  
Jacob Olaoluwa Oluyege ◽  
Monisade Omolade Adeoye ◽  
Busayo Mutiat Olowe

Abstract This research aimed to assess the physicochemical and bacteriological quality of underground water, and determine the antibiotic susceptibility and presence of plasmids in multiple antibiotic-resistant (MAR) Escherichia coli O157:H7 in underground water sources in Ado-Ekiti. Physicochemical and bacteriological analysis of water samples were carried out using standard methods, an antibiotic susceptibility test was investigated using the standard disc diffusion method and plasmid analysis of MAR isolates was carried out using the polymerase chain reaction (PCR) technique. The physicochemical parameters analyzed were within WHO recommendations except for pH and potassium while the water samples did not conform to the WHO bacteriological recommendations for drinking water. A total of 272 E. coli were isolated and identified, among which 150 isolates were non-sorbitol fermenters (NSF) and taken as presumptive E. coli O157. MAR to three and more classes of antibiotics used were observed among these NSF with high MAR-Index, &gt;0.2. Plasmid analysis of selected 15 isolates among the MAR NSF showed that their resistance to antibiotics was likely plasmid-mediated as they carry one to two plasmids on them. The study revealed that the water samples from Ado-Ekiti metropolis are unsafe for consumption.


1993 ◽  
Vol 27 (3-4) ◽  
pp. 267-270 ◽  
Author(s):  
M. T. Augoustinos ◽  
N. A. Grabow ◽  
B. Genthe ◽  
R. Kfir

A fluorogenic β-glucuronidase assay comprising membrane filtration followed by selective enumeration on m-FC agar at 44.5°C and further confirmation using tlie 4-metliylumbelliferyl-β-D-glucuronide (MUG) containing medium was evaluated for the detection of Escherichia coli in water. A total of 200 typical blue and non-typical blue colonies were isolated from sea and fresh water samples using initial selective enumeration on m-FC agar. Pure cultures of the selected colonies were further tested using the MUG assay and identified using the API 20E method. Of the colonies tested which were shown to be positive using the MUG assay 99.4% were Escherichia coli. The results of this study indicate the combination of the m-FC method followed by the MUG assay to be highly efficient for the selection and confirmation of E. coli from a wide range of environmental waters.


2020 ◽  
Vol 16 (3) ◽  
pp. 373-380
Author(s):  
Mohammad B. Zendeh ◽  
Vadood Razavilar ◽  
Hamid Mirzaei ◽  
Khosrow Mohammadi

Background: Escherichia coli O157:H7 is one of the most common causes of contamination in Lighvan cheese processing. Using from natural antimicrobial essential oils is applied method to decrease the rate of microbial contamination of dairy products. The present investigation was done to study the antimicrobial effects of Z. multiflora and O. basilicum essential oils on survival of E. coli O157:H7 during ripening of traditional Lighvan cheese. Methods: Leaves of the Z. multiflora and O. basilicum plants were subjected to the Clevenger apparatus. Concentrations of 0, 100 and 200 ppm of the Z. multiflora and 0, 50 and 100 ppm of O. basilicum essential oils and also 103 and 105 cfu/ml numbers of E. coli O157:H7 were used. The numbers of the E. coli O157:H7 bacteria were analyzed during the days 0, 30, 60 and 90 of the ripening period. Results: Z. multiflora and O. basilicum essential oils had considerable antimicrobial effects against E. coli O157:H7. Using the essential oils caused decrease in the numbers of E. coli O157:H7 bacteria in 90th days of ripening (P <0.05). Using from Z. multiflora at concentration of 200 ppm can reduce the survival of E. coli O157:H7 in Lighvan cheese. Conclusion: Using Z. multiflora and O. basilicum essential oils as good antimicrobial agents can reduce the risk of foodborne bacteria and especially E. coli O157:H7 in food products.


Sign in / Sign up

Export Citation Format

Share Document