scholarly journals An alternative Candida spp. cell wall disruption method using a basic sorbitol lysis buffer and glass beads

2008 ◽  
Vol 75 (3) ◽  
pp. 576-578 ◽  
Author(s):  
Crystale Siew Ying Lim ◽  
Chee Hong Tung ◽  
Rozita Rosli ◽  
Pei Pei Chong
Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3813 ◽  
Author(s):  
Shuai Zhang ◽  
Yuyong Hou ◽  
Zhiyong Liu ◽  
Xiang Ji ◽  
Di Wu ◽  
...  

Currently, lipid extraction remains a major bottleneck in microalgae technology for biofuel production. In this study, an effective and easily controlled cell wall disruption method based on electro-Fenton reaction was used to enhance lipid extraction from the wet biomass of Nannochloropsis oceanica IMET1. The results showed that 1.27 mM of hydroxide radical (HO•) was generated under the optimal conditions with 9.1 mM FeSO4 in a 16.4 mA·cm−2 current density for 37.0 min. After the electro-Fenton treatment, the neutral lipid extraction yield of microalgae (~155 mg) increased from 40% to 87.5%, equal to from 12.2% to 26.7% dry cell weight (DCW). In particular, the fatty acid composition remained stable. The cell wall disruption and lipid extraction processes were displayed by the transmission electron microscope (TEM) and fluorescence microscopy (FM) observations, respectively. Meanwhile, the removal efficiency of algal cells reached 85.2% within 2 h after the reaction was terminated. Furthermore, the biomass of the microalgae cultured in the electrolysis wastewater treated with fresh nutrients reached 3 g/L, which is 12-fold higher than that of the initial after 24 days. These finds provided an economic and efficient method for lipid extraction from wet microalgae, which could be easily controlled by current magnitude regulation.


Author(s):  
Daryush Arabian

Microalgae have emerged as one of the most promising options for biodiesel production over the past few decades. Lipid extraction from microalgae for biodiesel production as a bottleneck of biodiesel production technology was the main purpose of this study. In this study different methods of the cell wall disruption were compared. Then, two methods of ultrasound and bead mill were used as methods of the cell wall disruption. The maximum lipid extracted by ultrasound was 17.10% and by bead mill was 15.16% (based on microalgae biomass dry weight). After the cell wall disruption of microalgae, for lipid extraction, chloroform-methanol solvent combination was used as a high extraction method and hexane-ethanol solvent combination was used as an environmentally friendly method. In this regard, the effect of solvent to biomass ratio, temperature and extraction time was investigated and the optimal results for chloroform-methanol solvent combination were 8 ml/g, 45°C and 60 minutes, respectively, and for hexane-ethanol combination were 6 ml/g, 35◦C and 73 minutes, respectively. Under these optimal conditions, the highest amount of extracted lipid from Chlorella vulgaris with a moisture content of 87.50%, and ultrasound as a cell wall disruption method were obtained 20.39% and 16.41% (based on microalgae dry weight) with a combination of chloroform-methanol solvents and hexane-ethanol respectively. Also the highest extraction rates of 17.63% and 13.85% were obtained for the combination of chloroform-methanol and hexane-ethanol solvents, respectively by bead milling as cell wall disruption method


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


2018 ◽  
Vol 28 (4) ◽  
pp. 169-178 ◽  
Author(s):  
Hyun-Ju Hwang ◽  
Yong Tae Kim ◽  
Nam Seon Kang ◽  
Jong Won Han

The algal cell wall is a potent barrier for delivery of transgenes for genetic engineering. Conventional methods developed for higher plant systems are often unable to penetrate or remove algal cell walls owing to their unique physical and chemical properties. Therefore, we developed a simple transformation method for <i>Chlamydomonas reinhardtii</i> using commercially available enzymes. Out of 7 enzymes screened for cell wall disruption, a commercial form of subtilisin (Alcalase) was the most effective at a low concentration (0.3 Anson units/mL). The efficiency was comparable to that of gamete lytic enzyme, a protease commonly used for the genetic transformation of <i>C. reinhardtii</i>. The transformation efficiency of our noninvasive method was similar to that of previous methods using autolysin as a cell wall-degrading enzyme in conjunction with glass bead transformation. Subtilisin showed approximately 35% sequence identity with sporangin, a hatching enzyme of <i>C. reinhardtii</i>, and shared conserved active domains, which may explain the effective cell wall degradation. Our trans­formation method using commercial subtilisin is more reliable and time saving than the conventional method using autolysin released from gametes for cell wall lysis.


2017 ◽  
Vol 239 ◽  
pp. 204-210 ◽  
Author(s):  
C. Safi ◽  
L. Cabas Rodriguez ◽  
W.J. Mulder ◽  
N. Engelen-Smit ◽  
W. Spekking ◽  
...  

Author(s):  
Zahra Salehi ◽  
Azam Fattahi ◽  
Ensieh lotfali ◽  
Abdolhassan Kazemi ◽  
Ali Shakeri-Zadeh ◽  
...  

Purpose: The present study was performed to examine whether caspofungin-coated gold nanoparticles (CAS-AuNPs) may offer the right platform for sensitivity induction in resistant isolates. Methods: For the purpose of the study, a total of 58 archived Candida species were enrolled in the research. The identification of Candida spp. was performed using polymerase chain reaction-restriction fragment length polymorphism and HWP1 gene amplification approaches. The conjugated CAS-AuNPs were synthesized and then characterized using transmission electron microscopy (TEM) and Zetasizer system to determine their morphology, size, and charge. Furthermore, the efficacy of CAS, CAS-AuNPs conjugate, and AuNPs against Candida spp. was assessed based on the Clinical and Laboratory Standards Institute M60. Finally, the interaction of CAS-AuNPs with Candida element was evaluated via scanning electron microscopy (SEM). Results: According to the TEM results, the synthesized CAS-AuNPs had a spherical shape with an average size of 20 nm. The Zeta potential of CAS-AuNPs was -38.2 mV. Statistical analyses showed that CAS-AuNPs could significantly reduce the minimum inhibitory concentration against C. albicans (P=0.0005) and non-albicans Candida (NAC) species (P<0.0001). All isolates had a MIC value of ≥ 4 µg/ml for CAS, except for C. glabrata. The results of SEM analysis confirmed the effects of AuNPs on the membrane and cell wall structure of C. globrata exposed to CAS-AuNPs, facilitating the formation of pores on the cell wall and finally cell death. Conclusion: The findings revealed that CAS-AuNPs conjugates had significant antifungal effects against Candida spp. through the degradation of the membrane and cell wall integrity. Therefore, it can be concluded that the encapsulation of antifungal drugs in combination with NPs not only diminishes side effects but also enhances the effectiveness of the medications.


2018 ◽  
Vol 115 ◽  
pp. 12-18 ◽  
Author(s):  
Indresh K. Maurya ◽  
Samer Singh ◽  
Rupinder Tewari ◽  
Manish Tripathi ◽  
Shashi Upadhyay ◽  
...  

2020 ◽  
Vol 176 ◽  
pp. 105999
Author(s):  
Anna M. Kot ◽  
Iwona Gientka ◽  
Anna Bzducha-Wróbel ◽  
Stanisław Błażejak ◽  
Agnieszka Kurcz

Sign in / Sign up

Export Citation Format

Share Document