Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences

Mitochondrion ◽  
2016 ◽  
Vol 31 ◽  
pp. 63-74 ◽  
Author(s):  
Madhusudanarao Vuda ◽  
Ashwin Kamath
Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 109 ◽  
Author(s):  
Chisato Fujimoto ◽  
Tatsuya Yamasoba

Mitochondrial dysfunction is associated with the etiologies of sensorineural hearing loss, such as age-related hearing loss, noise- and ototoxic drug-induced hearing loss, as well as hearing loss due to mitochondrial gene mutation. Mitochondria are the main sources of reactive oxygen species (ROS) and ROS-induced oxidative stress is involved in cochlear damage. Moreover, the release of ROS causes further damage to mitochondrial components. Antioxidants are thought to counteract the deleterious effects of ROS and thus, may be effective for the treatment of oxidative stress-related diseases. The administration of mitochondria-targeted antioxidants is one of the drug delivery systems targeted to mitochondria. Mitochondria-targeted antioxidants are expected to help in the prevention and/or treatment of diseases associated with mitochondrial dysfunction. Of the various mitochondria-targeted antioxidants, the protective effects of MitoQ and SkQR1 against ototoxicity have been previously evaluated in animal models and/or mouse auditory cell lines. MitoQ protects against both gentamicin- and cisplatin-induced ototoxicity. SkQR1 also provides auditory protective effects against gentamicin-induced ototoxicity. On the other hand, decreasing effect of MitoQ on gentamicin-induced cell apoptosis in auditory cell lines has been controversial. No clinical studies have been reported for otoprotection using mitochondrial-targeted antioxidants. High-quality clinical trials are required to reveal the therapeutic effect of mitochondria-targeted antioxidants in terms of otoprotection in patients.


Author(s):  
Amy L. Ball ◽  
Katarzyna M. Bloch ◽  
Lucille Rainbow ◽  
Xuan Liu ◽  
John Kenny ◽  
...  

AbstractMitochondrial DNA (mtDNA) is highly polymorphic and encodes 13 proteins which are critical to the production of ATP via oxidative phosphorylation. As mtDNA is maternally inherited and undergoes negligible recombination, acquired mutations have subdivided the human population into several discrete haplogroups. Mitochondrial haplogroup has been found to significantly alter mitochondrial function and impact susceptibility to adverse drug reactions. Despite these findings, there are currently limited models to assess the effect of mtDNA variation upon susceptibility to adverse drug reactions. Platelets offer a potential personalised model of this variation, as their anucleate nature offers a source of mtDNA without interference from the nuclear genome. This study, therefore, aimed to determine the effect of mtDNA variation upon mitochondrial function and drug-induced mitochondrial dysfunction in a platelet model. The mtDNA haplogroup of 383 healthy volunteers was determined using next-generation mtDNA sequencing (Illumina MiSeq). Subsequently, 30 of these volunteers from mitochondrial haplogroups H, J, T and U were recalled to donate fresh, whole blood from which platelets were isolated. Platelet mitochondrial function was tested at basal state and upon treatment with compounds associated with both mitochondrial dysfunction and adverse drug reactions, flutamide, 2-hydroxyflutamide and tolcapone (10–250 μM) using extracellular flux analysis. This study has demonstrated that freshly-isolated platelets are a practical, primary cell model, which is amenable to the study of drug-induced mitochondrial dysfunction. Specifically, platelets from donors of haplogroup J have been found to have increased susceptibility to the inhibition of complex I-driven respiration by 2-hydroxyflutamide. At a time when individual susceptibility to adverse drug reactions is not fully understood, this study provides evidence that inter-individual variation in mitochondrial genotype could be a factor in determining sensitivity to mitochondrial toxicants associated with costly adverse drug reactions.


2017 ◽  
Vol 174 (23) ◽  
pp. 4409-4429 ◽  
Author(s):  
Miriam Polo ◽  
Fernando Alegre ◽  
Angela B Moragrega ◽  
Lara Gibellini ◽  
Alberto Marti-Rodrigo ◽  
...  

Toxicology ◽  
2010 ◽  
Vol 278 (3) ◽  
pp. 348-349
Author(s):  
Katharine Howe ◽  
Laura Bazley ◽  
Shuang Song ◽  
James Dykens

Sign in / Sign up

Export Citation Format

Share Document