Histone deacetylase inhibitors induce apoptosis, histone hyperacetylation and up-regulation of gene transcription in Schistosoma mansoni

2009 ◽  
Vol 168 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Florence Dubois ◽  
Stéphanie Caby ◽  
Frédérik Oger ◽  
Céline Cosseau ◽  
Monique Capron ◽  
...  
Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1490-1495 ◽  
Author(s):  
Yuko Koyama ◽  
Masaaki Adachi ◽  
Masuo Sekiya ◽  
Mutsuhiro Takekawa ◽  
Kohzoh Imai

Histone deacetylase (HDAC) inhibitors can induce transcriptional activation of a number of genes and induce cellular differentiation as histone acetylation levels increase. Although these inhibitors induce apoptosis in several cell lines, the precise mechanism by which they do so remains obscure. This study shows that HDAC inhibitors, sodium butyrate and trichostatin A (TSA), abrogate interleukin (IL)-2–mediated gene expression in IL-2–dependent cells. The HDAC inhibitors readily induced apoptosis in IL-2–dependent ILT-Mat cells and BAF-B03 transfectants expressing the IL-2 receptor βc chain, whereas they induced far less apoptosis in cytokine-independent K562 cells. However, these inhibitors similarly increased acetylation levels of histones in both cells. Although histone hyperacetylation is believed to lead to transcriptional activation, the results showed an abrogation of IL-2–mediated induction of c-myc,bag-1, and LC-PTP gene expression. This observed abrogation of gene expression occurred prior to phosphatidylserine externalization, a process that occurs in early apoptotic cells. Considering the biologic role played by IL-2–mediated gene expression in cell survival, these data suggest that its abrogation may contribute to the apoptotic process induced by HDAC inhibitors.


2021 ◽  
Vol 22 (23) ◽  
pp. 12952
Author(s):  
Theolan Adimulam ◽  
Thilona Arumugam ◽  
Ashmika Foolchand ◽  
Terisha Ghazi ◽  
Anil A. Chuturgoon

Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that control gene transcription. Organoselenium compounds have become promising contenders in cancer therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation status of histones and non-histone proteins, altering gene transcription. This review aims to summarise the effect of natural and synthetic organoselenium compounds on histone and non-histone protein acetylation/deacetylation in cancer therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yudan Cui ◽  
Jingshan Cai ◽  
Wenxin Wang ◽  
Shengjun Wang

Histone deacetylase inhibitors (HDACIs) are antitumor drugs that are being developed for use in clinical settings. HDACIs enhance histone or nonhistone acetylation and promote gene transcription via epigenetic regulation. Importantly, these drugs have cytotoxic or cytostatic properties and can directly inhibit tumor cells. However, how HDACIs regulate immunocytes in the tumor microenvironment, such as myeloid-derived suppressor cells (MDSCs), has yet to be elucidated. In this review, we summarize the effects of different HDACIs on the immunosuppressive function and expansion of MDSCs based on the findings of relevant studies.


2017 ◽  
Vol 11 (4) ◽  
pp. e0005539 ◽  
Author(s):  
Letícia Anderson ◽  
Monete Rajão Gomes ◽  
Lucas Ferreira daSilva ◽  
Adriana da Silva Andrade Pereira ◽  
Marina M. Mourão ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1490-1495 ◽  
Author(s):  
Yuko Koyama ◽  
Masaaki Adachi ◽  
Masuo Sekiya ◽  
Mutsuhiro Takekawa ◽  
Kohzoh Imai

Abstract Histone deacetylase (HDAC) inhibitors can induce transcriptional activation of a number of genes and induce cellular differentiation as histone acetylation levels increase. Although these inhibitors induce apoptosis in several cell lines, the precise mechanism by which they do so remains obscure. This study shows that HDAC inhibitors, sodium butyrate and trichostatin A (TSA), abrogate interleukin (IL)-2–mediated gene expression in IL-2–dependent cells. The HDAC inhibitors readily induced apoptosis in IL-2–dependent ILT-Mat cells and BAF-B03 transfectants expressing the IL-2 receptor βc chain, whereas they induced far less apoptosis in cytokine-independent K562 cells. However, these inhibitors similarly increased acetylation levels of histones in both cells. Although histone hyperacetylation is believed to lead to transcriptional activation, the results showed an abrogation of IL-2–mediated induction of c-myc,bag-1, and LC-PTP gene expression. This observed abrogation of gene expression occurred prior to phosphatidylserine externalization, a process that occurs in early apoptotic cells. Considering the biologic role played by IL-2–mediated gene expression in cell survival, these data suggest that its abrogation may contribute to the apoptotic process induced by HDAC inhibitors.


2005 ◽  
Vol 4 (2) ◽  
pp. 115-122 ◽  
Author(s):  
HIROSHI UCHIDA ◽  
TETSUO MARUYAMA ◽  
TORU ARASE ◽  
MASANORI ONO ◽  
TAKASHI NAGASHIMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document