Roles of mannose binding lectin (MBL)-associated serine proteases (MASPs) in opsonization and phagocytosis of Staphylococcus aureus

2007 ◽  
Vol 44 (1-3) ◽  
pp. 188
Author(s):  
D. Iwaki ◽  
K. Kanno ◽  
M. Takahashi ◽  
Y. Endo ◽  
M. Matsushita ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Michael Osthoff ◽  
Marten Trendelenburg

Contrast-induced nephropathy (CIN) is the third leading cause of acute renal failure in hospitalized patients. Endothelial dysfunction, renal medullary ischemia, and tubular toxicity are regarded as the most important factors in the pathogenesis of CIN. Mannose-binding lectin (MBL), a pattern recognition protein of the lectin pathway of complement, has been found to aggravate and mediate tissue damage during experimental renal ischemia/reperfusion (I/R) injury which was alleviated by inhibition with C1 inhibitor, a potent MBL, and lectin pathway inhibitor. In this paper, we highlight the potential role of MBL in the pathogenesis of human CIN. In experimental I/R models, MBL was previously found to induce tubular cell death independent of the complement system. In addition, after binding to vascular endothelial cells, MBL and its associated serine proteases were able to trigger a proinflammatory reaction and contribute to endothelial dysfunction. In humans, urinary MBL was increased after administration of contrast media and in individuals with CIN. Moreover, individuals with normal/high MBL levels were at increased risk to develop radiocontrast-induced renal dysfunction. Hence, MBL and the lectin pathway seem to be a promising target given that a licensed, powerful, human recombinant inhibitor exits to be added to the scarce armamentarium currently available for prophylaxis of CIN.


2004 ◽  
Vol 199 (10) ◽  
pp. 1379-1390 ◽  
Author(s):  
Lei Shi ◽  
Kazue Takahashi ◽  
Joseph Dundee ◽  
Sarit Shahroor-Karni ◽  
Steffen Thiel ◽  
...  

Gram-positive organisms like Staphylococcus aureus are a major cause of morbidity and mortality worldwide. Humoral response molecules together with phagocytes play a role in host responses to S. aureus. The mannose-binding lectin (MBL, also known as mannose-binding protein) is an oligomeric serum molecule that recognizes carbohydrates decorating a broad range of infectious agents including S. aureus. Circumstantial evidence in vitro and in vivo suggests that MBL plays a key role in first line host defense. We tested this contention directly in vivo by generating mice that were devoid of all MBL activity. We found that 100% of MBL-null mice died 48 h after exposure to an intravenous inoculation of S. aureus compared with 45% mortality in wild-type mice. Furthermore, we demonstrated that neutrophils and MBL are required to limit intraperitoneal infection with S. aureus. Our study provides direct evidence that MBL plays a key role in restricting the complications associated with S. aureus infection in mice and raises the idea that the MBL gene may act as a disease susceptibility gene against staphylococci infections in humans.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010226
Author(s):  
Carolina De Marco Verissimo ◽  
Heather L. Jewhurst ◽  
József Dobó ◽  
Péter Gál ◽  
John P. Dalton ◽  
...  

The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.


Immunobiology ◽  
2016 ◽  
Vol 221 (10) ◽  
pp. 1166 ◽  
Author(s):  
Natsumi Sakamoto ◽  
Takeshi Machida ◽  
Minoru Takahashi ◽  
Teizo Fujita ◽  
Hideharu Sekine

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1792
Author(s):  
Maciej Cedzyński ◽  
Anna S. Świerzko

The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.


2011 ◽  
Vol 55 (6) ◽  
pp. 427-433 ◽  
Author(s):  
Koichiro Tateishi ◽  
Takahiro Kanemoto ◽  
Teizo Fujita ◽  
Misao Matsushita

Sign in / Sign up

Export Citation Format

Share Document