Meso-microporous carbon nanofibers with in-situ embedded Co nanoparticles for catalytic oxidization of azo dyes

2019 ◽  
Vol 289 ◽  
pp. 111060 ◽  
Author(s):  
Ning Cai ◽  
Mei Chen ◽  
Mingming Liu ◽  
Jianzhi Wang ◽  
Liang Shen ◽  
...  
Author(s):  
Juan Li ◽  
Bo Wang ◽  
Tianzhao Hu ◽  
Yuzuo Wang ◽  
Zhenhua Sun ◽  
...  

Sodium-ion hybrid capacitors are emerging as the promising energy storage and power output devices. However, they suffer from sluggish faradaic reaction of anode and low capacity of cathode. Zeolite-templated carbons...


2011 ◽  
Vol 14 (4) ◽  
pp. 560-563 ◽  
Author(s):  
André Navarro de Miranda ◽  
Luiz Claudio Pardini ◽  
Carlos Alberto Moreira dos Santos ◽  
Ricardo Vieira

2018 ◽  
Vol 25 (6) ◽  
pp. 1673-1682 ◽  
Author(s):  
Adam S. Hoffman ◽  
Joseph A. Singh ◽  
Stacey F. Bent ◽  
Simon R. Bare

In situ characterization of catalysts gives direct insight into the working state of the material. Here, the design and performance characteristics of a universal in situ synchrotron-compatible X-ray diffraction cell capable of operation at high temperature and high pressure, 1373 K, and 35 bar, respectively, are reported. Its performance is demonstrated by characterizing a cobalt-based catalyst used in a prototypical high-pressure catalytic reaction, the Fischer–Tropsch synthesis, using X-ray diffraction. Cobalt nanoparticles supported on silica were studied in situ during Fischer–Tropsch catalysis using syngas, H2 and CO, at 723 K and 20 bar. Post reaction, the Co nanoparticles were carburized at elevated pressure, demonstrating an increased rate of carburization compared with atmospheric studies.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 550 ◽  
Author(s):  
Oleg Tolochko ◽  
Tatiana Koltsova ◽  
Elizaveta Bobrynina ◽  
Andrei Rudskoy ◽  
Elena Zemtsova ◽  
...  

Aluminum-based metallic matrix composites reinforced by carbon nanofibers (CNFs) are important precursors for development of new light and ultralight materials with enhanced properties and high specific characteristics. In the present work, powder metallurgy technique was applied for production of composites based on reinforcement of aluminum matrices by CNFs of different concentrations (0~2.5 wt%). CNFs were produced by chemical vapor deposition (CVD) and mechanical activation. We determined that in situ synthesis of carbon nanostructures with subsequent mechanic activation provides satisfactory distribution of nanofibers and homogeneous composite microstructure. Introduction of 1 vol% of flux (0.25 NaCl + 0.25 KCl + 0.5 CaF2) during mechanic activation helps to reduce the strength of the contacts between the particles. Additionally, better reinforcement of alumina particles and strengthening the bond between CNFs and aluminum are observed due to alumina film removal. Introduction of pure aluminum into mechanically alloyed powder provides the possibility to control composite durability, plasticity and thermal conductivity.


2020 ◽  
Vol 26 (15) ◽  
pp. 3326-3334 ◽  
Author(s):  
Jiye Li ◽  
Xin Song ◽  
Weimiao Zhang ◽  
Hao Xu ◽  
Teng Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document