scholarly journals The Ile191Val is a partial loss-of-function variant of the TAS1R2 sweet-taste receptor and is associated with reduced glucose excursions in humans

2021 ◽  
Vol 54 ◽  
pp. 101339
Author(s):  
Joan Serrano ◽  
Jaroslava Seflova ◽  
Jihye Park ◽  
Marsha Pribadi ◽  
Keisuke Sanematsu ◽  
...  
1982 ◽  
Vol 175 (4) ◽  
pp. 266-268 ◽  
Author(s):  
Jean-Marie Tinti ◽  
Claude Nofre ◽  
Anne-Marie Peytavi

2012 ◽  
Vol 303 (4) ◽  
pp. E464-E474 ◽  
Author(s):  
Maartje C. P. Geraedts ◽  
Tatsuyuki Takahashi ◽  
Stephan Vigues ◽  
Michele L. Markwardt ◽  
Andongfac Nkobena ◽  
...  

The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K+(KATP) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3−/−mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3+/+, but not T1R3−/−, ileum explants; this secretion was not mimicked by the KATPchannel blocker glibenclamide. T1R2−/−mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was KATPchannel-dependent and glucose-specific emerged in the large intestine of T1R3−/−mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB.


2016 ◽  
Vol 25 (3) ◽  
pp. 711-719 ◽  
Author(s):  
Kiran K. Singarapu ◽  
Marco Tonelli ◽  
John L. Markley ◽  
Fariba M. Assadi-Porter

Sign in / Sign up

Export Citation Format

Share Document