scholarly journals Unstable Allotetraploid Tobacco Genome due to Frequent Homeologous Recombination, Segmental Deletion, and Chromosome Loss

2018 ◽  
Vol 11 (7) ◽  
pp. 914-927 ◽  
Author(s):  
Shumin Chen ◽  
Feihong Ren ◽  
Lei Zhang ◽  
Yong Liu ◽  
Xuejun Chen ◽  
...  
1996 ◽  
Vol 16 (11) ◽  
pp. 6110-6120 ◽  
Author(s):  
S R Chambers ◽  
N Hunter ◽  
E J Louis ◽  
R H Borts

Efficient genetic recombination requires near-perfect homology between participating molecules. Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. The effects of chromosomal divergence in diploids of Saccharomyces cerevisiae in which one copy of chromosome III is derived from a closely related species, Saccharomyces paradoxus, have been examined. Meiotic recombination between the diverged chromosomes is decreased by 25-fold. Spore viability is reduced with an observable increase in the number of tetrads with only two or three viable spores. Asci with only two viable spores are disomic for chromosome III, consistent with meiosis I nondisjunction of the homeologs. Asci with three viable spores are highly enriched for recombinants relative to tetrads with four viable spores. In 96% of the class with three viable spores, only one spore possesses a recombinant chromosome III, suggesting that the recombination process itself contributes to meiotic death. This phenomenon is dependent on the activities of the mismatch repair genes PMS1 and MSH2. A model of mismatch-stimulated chromosome loss is proposed to account for this observation. As expected, crossing over is increased in pms1 and msh2 mutants. Furthermore, genetic exchange in pms1 msh2 double mutants is affected to a greater extent than in either mutant alone, suggesting that the two proteins act independently to inhibit homeologous recombination. All mismatch repair-deficient strains exhibited reductions in the rate of chromosome III nondisjunction.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 665-679 ◽  
Author(s):  
Jac A Nickoloff ◽  
Douglas B Sweetser ◽  
Jennifer A Clikeman ◽  
Guru Jot Khalsa ◽  
Sarah L Wheeler

Abstract Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at ∼100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised ∼7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 489-503 ◽  
Author(s):  
Karen E Ross ◽  
Orna Cohen-Fix

Abstract Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G1 transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1Δ and mad2Δ single mutants, the mad2Δ cdh1Δ double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2Δ cdh1Δ and pds1Δ cdh1Δ strains were rescued by overexpressing Swe1p, a G2/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1Δ mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.


Genetics ◽  
1997 ◽  
Vol 146 (4) ◽  
pp. 1319-1331 ◽  
Author(s):  
Sharon E Bickel ◽  
Dudley W Wyman ◽  
Terry L Orr-Weaver

The ord gene is required for proper segregation of all chromosomes in both male and female Drosophila meiosis. Here we describe the isolation of a null ord allele and examine the consequences of ablating ord function. Cytologically, meiotic sister-chromatid cohesion is severely disrupted in flies lacking ORD protein. Moreover, the frequency of missegregation in genetic tests is consistent with random segregation of chromosomes through both meiotic divisions, suggesting that sister cohesion may be completely abolished. However, only a slight decrease in viability is observed for ord null flies, indicating that ORD function is not essential for cohesion during somatic mitosis. In addition, we do not observe perturbation of germ-line mitotic divisions in flies lacking ORD activity. Our analysis of weaker ord alleles suggests that ORD is required for proper centromeric cohesion after arm cohesion is released at the metaphase I/anaphase I transition. Finally, although meiotic cohesion is abolished in the ord null fly, chromosome loss is not appreciable. Therefore, ORD activity appears to promote centromeric cohesion during meiosis II but is not essential for kinetochore function during anaphase.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 133-146 ◽  
Author(s):  
Ainsley Nicholson ◽  
Miyono Hendrix ◽  
Sue Jinks-Robertson ◽  
Gray F Crouse

Abstract The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirecombination roles. In addition, substrates containing defined types of mismatches (base-base mismatches; 1-, 4-, or 12-nt insertion/deletion loops; or 18-nt palindromes) were used to examine recognition of these mismatches in mitotic recombination intermediates. Msh2p was required for recognition of all types of mismatches, whereas Msh6p recognized only base-base mismatches and 1-nt insertion/deletion loops. Msh3p was involved in recognition of the palindrome and all loops, but also had an unexpected antirecombination role when the potential heteroduplex contained only base-base mismatches. In contrast to their similar antimutator roles, Pms1p consistently inhibited recombination to a lesser degree than did Msh2p. In addition to the yeast MutS and MutL homologs, the exonuclease Exo1p and the nucleotide excision repair proteins Rad1p and Rad10p were found to have roles in inhibiting recombination between mismatched substrates.


Genetics ◽  
1985 ◽  
Vol 110 (3) ◽  
pp. 381-395
Author(s):  
Leland H Hartwell ◽  
David Smith

ABSTRACT Thirteen of 14 temperature-sensitive mutants deficient in successive steps of mitotic chromosome transmission (cdc2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 20) from spindle pole body separation to a late stage of nuclear division exhibited a dramatic increase in the frequency of chromosome loss and/or mitotic recombination when they were grown at their maximum permissive temperatures. The increase in chromosome loss and/or recombination is likely to be due to the deficiency of functional gene product rather than to an aberrant function of the mutant gene product since the mutant alleles are, with one exception, recessive to the wild-type allele for this phenotype. The generality of this result suggests that a delay in almost any stage of chromosome replication or segregation leads to a decrease in the fidelity of mitotic chromosome transmission. In contrast, temperature-sensitive mutants defective in the control step of the cell cycle (cdc28), in cytokinesis (cdc3) or in protein synthesis (ils1) did not exhibit increased recombination or chromosome loss.—Based upon previous results with mutants and DNA-damaging agents in a variety of organisms, we suggest that the induction of mitotic recombination in certain mutants is due to the action of a repair pathway upon nicks or gaps left in the DNA. This interpretation is supported by the fact that the induced recombination is dependent upon the RAD52 gene product, an essential component in the recombinogenic DNA repair pathway. Gene products whose deficiency leads to induced recombination are, therefore, strong candidates for proteins that function in DNA metabolism. Among the mutants that induce recombination are those known to be defective in some aspect of DNA replication (cdc2, 6, 8, 9) as well as some mutants defective in the G2 (cdc13 and 17) and M (cdc5 and 14) phases of the mitotic cycle. We suggest that special aspects of DNA metabolism may be occurring in G2 and M in order to prepare the chromosomes for proper segregation.


1994 ◽  
Vol 80 (2) ◽  
pp. 151-156
Author(s):  
Elvira D'Alessandro ◽  
Maria Luisa Lo Re ◽  
Roberto Crisci ◽  
Claudio Ligas ◽  
Giorgio Furio Coloni

Non-small cell lung cancer (NSCLC) shows a complex cytogenetic heterogeneity and up to now no particular chromosomal aberration seems to characterize its malignant evolution. We therefore performed cytogenetic analyses of 20 primary NSCLC, 8 adenocarcinomas and 12 squamous cell carcinomas on direct preparations or short-term cultures. Only 1 case was analyzed after long-term culture. Results were obtained from 11 samples and clonal rearrangements were found in 3 cases, a diploid and a near-triploid clone with several aberrations such as i (9q), rob (14; 15) and rob (21; 21) in 1 case, a near-triploid clone in 1 case, and Y chromosome loss in 1 case. Other aberrations found were sporadic, but + 7 aneuploidy and translocations involving 1p were detected in 2 and 3 samples respectively. Although to date it has been very difficult to recognize primary changes in NSCLC, nevertheless a literature review and our results indicate that i(9q) and robertsonian translocations are relevant findings.


2013 ◽  
Vol 12 (12) ◽  
pp. 1629-1640 ◽  
Author(s):  
Riyad N. H. Seervai ◽  
Stephen K. Jones ◽  
Matthew P. Hirakawa ◽  
Allison M. Porman ◽  
Richard J. Bennett

ABSTRACTCandidaspecies exhibit a variety of ploidy states and modes of sexual reproduction. Most species possess the requisite genes for sexual reproduction, recombination, and meiosis, yet only a few have been reported to undergo a complete sexual cycle including mating and sporulation.Candida albicans, the most studiedCandidaspecies and a prevalent human fungal pathogen, completes its sexual cycle via a parasexual process of concerted chromosome loss rather than a conventional meiosis. In this study, we examine ploidy changes inCandida tropicalis, a closely related species toC. albicansthat was recently revealed to undergo sexual mating.C. tropicalisdiploid cells mate to form tetraploid cells, and we show that these can be induced to undergo chromosome loss to regenerate diploid forms by growth on sorbose medium. The diploid products are themselves mating competent, thereby establishing a parasexual cycle in this species for the first time. Extended incubation (>120 generations) ofC. tropicalistetraploid cells under rich culture conditions also resulted in instability of the tetraploid form and a gradual reduction in ploidy back to the diploid state. The fitness levels ofC. tropicalisdiploid and tetraploid cells were compared, and diploid cells exhibited increased fitness relative to tetraploid cellsin vitro, despite diploid and tetraploid cells having similar doubling times. Collectively, these experiments demonstrate distinct pathways by which a parasexual cycle can occur inC. tropicalisand indicate that nonmeiotic mechanisms drive ploidy changes in this prevalent human pathogen.


2001 ◽  
Vol 21 (5) ◽  
pp. 1710-1718 ◽  
Author(s):  
David J. Galgoczy ◽  
David P. Toczyski

ABSTRACT Despite the fact that eukaryotic cells enlist checkpoints to block cell cycle progression when their DNA is damaged, cells still undergo frequent genetic rearrangements, both spontaneously and in response to genotoxic agents. We and others have previously characterized a phenomenon (adaptation) in which yeast cells that are arrested at a DNA damage checkpoint eventually override this arrest and reenter the cell cycle, despite the fact that they have not repaired the DNA damage that elicited the arrest. Here, we use mutants that are defective in checkpoint adaptation to show that adaptation is important for achieving the highest possible viability after exposure to DNA-damaging agents, but it also acts as an entrée into some forms of genomic instability. Specifically, the spontaneous and X-ray-induced frequencies of chromosome loss, translocations, and a repair process called break-induced replication occur at significantly reduced rates in adaptation-defective mutants. This indicates that these events occur after a cell has first arrested at the checkpoint and then adapted to that arrest. Because malignant progression frequently involves loss of genes that function in DNA repair, adaptation may promote tumorigenesis by allowing genomic instability to occur in the absence of repair.


1989 ◽  
Vol 224 (1) ◽  
pp. 31-78 ◽  
Author(s):  
S.G. Whittaker ◽  
F.K. Zimmermann ◽  
B. Dicus ◽  
W.W. Piegorsch ◽  
S. Fogel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document