Investigating Thiouracil Adsorption by an Iron-Doped Carbon Particle: Analyzing Structural, Electronic, and QTAIM Features

2021 ◽  
pp. 131885
Author(s):  
Yan Cao ◽  
Ali A. Rajhi ◽  
Mohammad Yousefi ◽  
Roya Ahmadi
Keyword(s):  
2020 ◽  
Vol 21 (21) ◽  
pp. 8151
Author(s):  
Sharda Kumari ◽  
Shibani Mukherjee ◽  
Debapriya Sinha ◽  
Salim Abdisalaam ◽  
Sunil Krishnan ◽  
...  

Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.


2021 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Johannes Mersch ◽  
Henriette Probst ◽  
Andreas Nocke ◽  
Chokri Cherif ◽  
Gerald Gerlach

Carbon particle-filled elastomers are a widely researched option to be used as piezoresistive strain sensors for soft robotics or human motion monitoring. Therefore, various polymers can be compounded with carbon black (CB), carbon nanotubes (CNT) or graphene. However, in many studies, the electrical resistance strain response of the carbon particle-filled elastomers is non-monotonic in dynamic evaluation scenarios. The non-monotonic material behavior is also called shoulder phenomenon or secondary peak. Until today, the underlying cause is not sufficiently well understood. In this study, several influencing test parameters on the shoulder phenomena are explored, such as strain level, strain rate and strain history. Moreover, material parameters such as CNT content and anisotropy are varied in melt-spun CNT filled thermoplastic polyurethane (TPU) filament yarns, and their non-monotonic sensor response is evaluated. Additionally, a theoretical concept for the underlying mechanism and thereupon-based model is presented. An equivalent circuit model is used, which incorporates the visco-elastic properties and the characteristic of the percolation network formed by the conductive filler material. The simulation results are in good agreement when compared to the experimental results.


2021 ◽  
Vol 23 ◽  
pp. 101047
Author(s):  
Muhammad Mohsin ◽  
Ijaz Ahmad Bhatti ◽  
Ambreen Ashar ◽  
Muhammad Waqas Khan ◽  
Muhammad Umer Farooq ◽  
...  

2010 ◽  
Vol 53 (2) ◽  
pp. 94-102 ◽  
Author(s):  
R. Alexandrescu ◽  
I. Morjan ◽  
M. Scarisoreanu ◽  
R. Birjega ◽  
C. Fleaca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document