Feasibility study of high-resolution DCE-MRI for glomerular filtration rate (GFR) measurement in a routine clinical modal

2015 ◽  
Vol 33 (8) ◽  
pp. 978-983 ◽  
Author(s):  
Yu-Dong Zhang ◽  
Chen-Jiang Wu ◽  
Jing Zhang ◽  
Xiao-Ning Wang ◽  
Xi-Sheng Liu ◽  
...  
Author(s):  
Michael Pedersen ◽  
Pietro Irrera ◽  
Walter Dastrù ◽  
Frank G. Zöllner ◽  
Kevin M. Bennett ◽  
...  

AbstractDynamic contrast-enhanced (DCE) MRI monitors the transit of contrast agents, typically gadolinium chelates, through the intrarenal regions, the renal cortex, the medulla, and the collecting system. In this way, DCE-MRI reveals the renal uptake and excretion of the contrast agent. An optimal DCE-MRI acquisition protocol involves finding a good compromise between whole-kidney coverage (i.e., 3D imaging), spatial and temporal resolution, and contrast resolution. By analyzing the enhancement of the renal tissues as a function of time, one can determine indirect measures of clinically important single-kidney parameters as the renal blood flow, glomerular filtration rate, and intrarenal blood volumes. Gadolinium-containing contrast agents may be nephrotoxic in patients suffering from severe renal dysfunction, but otherwise DCE-MRI is clearly useful for diagnosis of renal functions and for assessing treatment response and posttransplant rejection.Here we introduce the concept of renal DCE-MRI, describe the existing methods, and provide an overview of preclinical DCE-MRI applications to illustrate the utility of this technique to measure renal perfusion and glomerular filtration rate in animal models.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction is complemented by two separate publications describing the experimental procedure and data analysis.


1971 ◽  
Vol 10 (01) ◽  
pp. 16-24
Author(s):  
J. Fog Pedersen ◽  
M. Fog Pedersen ◽  
Paul Madsen

SummaryAn accurate catheter-free technique for clinical determination simultaneouslyof glomerular filtration rate and effective renal plasma flow by means of radioisotopes has been developed. The renal function is estimated by the amount of radioisotopes necessary to maintain a constant concentration in the patient’s blood. The infusion pumps are steered by a feedback system, the pumps being automatically turned on when the radiation measured over the patient’s head falls below a certain preset level and turned off when this level is again readied. 131I-iodopyracet was used for the estimation of effective renal plasma flow and125I-iothalamate estimation of the glomerular filtration rate. These clearances were compared to the conventional bladder clearances and good correlation was found between these two clearance methods (correlation coefficients 0.97 and.90 respectively). The advantages and disadvantages of this new clearance technique are discussed.


Sign in / Sign up

Export Citation Format

Share Document