scholarly journals Dynamic Contrast Enhancement (DCE) MRI–Derived Renal Perfusion and Filtration: Basic Concepts

Author(s):  
Michael Pedersen ◽  
Pietro Irrera ◽  
Walter Dastrù ◽  
Frank G. Zöllner ◽  
Kevin M. Bennett ◽  
...  

AbstractDynamic contrast-enhanced (DCE) MRI monitors the transit of contrast agents, typically gadolinium chelates, through the intrarenal regions, the renal cortex, the medulla, and the collecting system. In this way, DCE-MRI reveals the renal uptake and excretion of the contrast agent. An optimal DCE-MRI acquisition protocol involves finding a good compromise between whole-kidney coverage (i.e., 3D imaging), spatial and temporal resolution, and contrast resolution. By analyzing the enhancement of the renal tissues as a function of time, one can determine indirect measures of clinically important single-kidney parameters as the renal blood flow, glomerular filtration rate, and intrarenal blood volumes. Gadolinium-containing contrast agents may be nephrotoxic in patients suffering from severe renal dysfunction, but otherwise DCE-MRI is clearly useful for diagnosis of renal functions and for assessing treatment response and posttransplant rejection.Here we introduce the concept of renal DCE-MRI, describe the existing methods, and provide an overview of preclinical DCE-MRI applications to illustrate the utility of this technique to measure renal perfusion and glomerular filtration rate in animal models.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction is complemented by two separate publications describing the experimental procedure and data analysis.

Author(s):  
Pietro Irrera ◽  
Lorena Consolino ◽  
Walter Dastrù ◽  
Michael Pedersen ◽  
Frank G. Zöllner ◽  
...  

AbstractDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can provide a noninvasive way for assessing renal functional information following the administration of a small molecular weight gadolinium-based contrast agent. This method may be useful for investigating renal perfusion and glomerular filtration rates of rodents in vivo under various experimental (patho)physiological conditions. Here we describe a step-by-step protocol for DCE-MRI studies in small animals providing practical notes on acquisition parameters, sequences, T1 mapping approaches and procedures.This chapters is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Author(s):  
Frank G. Zöllner ◽  
Walter Dastrù ◽  
Pietro Irrera ◽  
Dario Livio Longo ◽  
Kevin M. Bennett ◽  
...  

AbstractHere we present an analysis protocol for dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data of the kidneys. It covers comprehensive steps to facilitate signal to contrast agent concentration mapping via T1 mapping and the calculation of renal perfusion and filtration parametric maps using model-free approaches, model free analysis using deconvolution, the Toft’s model and a Bayesian approach.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.


1975 ◽  
Vol 53 (4) ◽  
pp. 660-668 ◽  
Author(s):  
Mortimer Levy

Glucagon in small intravenous (i.v.) doses markedly increases glomerular filtration rate (GFR) in normal anesthetized dogs. In this study, the effects of glucagon 5 μg/min (i.v.) on renal hemodynamics was tested in four canine models of acute pre-renal failure (hemorrhage, barbiturate overdose; renal arterial clamping and renal arterial infusions of noradrenaline) and in a model of unilateral acute tubular necrosis at 4 h and 6–7 days following completion of the ischemic insult. Following hemorrhage and barbiturate excess, with arterial blood pressure maintained at 65–70 mm Hg, whole-kidney GFR and clearance rate of p-aminohippurate decreased by 50–70%. During this reduction of perfusion pressure, the subsequent infusion of glucagon increased GFR by 90–130%. In models where arterial pressure was normal during the period of ischemia (clamping and noradrenaline infusion), not only did glucagon significantly increase renal perfusion, but the ischemic kidney proved to be far more sensitive to the hemodynamic effects of glucagon (ΔGFR = 120–160%) than the contralateral control (ΔGFR = 30–40%). In three dogs completely anuric following renal arterial clamping, glucagon was able to improve blood flow and restart urine formation. Glucagon, but not dopamine, was able to simulate the beneficial effects of hypertonic mannitol on renal function in dogs with hemorrhagic hypotension. Glucagon was without effect in established acute tubular necrosis. This study, therefore, indicates that, during renal ischemia, glucagon may be quite effective in preserving urine output and perfusion of the kidneys.


Author(s):  
Kathleen Cantow ◽  
Roger G. Evans ◽  
Dirk Grosenick ◽  
Thomas Gladytz ◽  
Thoralf Niendorf ◽  
...  

AbstractRenal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe basic principles of methodology to quantify renal hemodynamics and tissue oxygenation by means of invasive probes in experimental animals. Advantages and disadvantages of the various methods are discussed in the context of the heterogeneity of renal tissue perfusion and oxygenation.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by a separate chapter describing the experimental procedure and data analysis.


2018 ◽  
Vol 7 (4) ◽  
pp. 379-389 ◽  
Author(s):  
Frederik H Verbrugge

Diuretic resistance is a powerful predictor of adverse outcome in acute heart failure (AHF), irrespectively of underlying glomerular filtration rate. Metrics of diuretic efficacy such as natriuresis, urine output, weight loss, net fluid balance, or fractional sodium excretion, differ in their risk for measurement error, convenience, and biological plausibility, which should be taken into account when interpreting their results. Loop diuretic resistance in AHF has multiple causes including altered drug pharmacokinetics, impaired renal perfusion and effective circulatory volume, neurohumoral activation, post-diuretic sodium retention, the braking phenomenon and functional as well as structural adaptations in the nephron. Ideally, these mechanisms should guide specific treatment decisions with the goal of achieving complete decongestion. Therefore, volume overload needs to be identified correctly to avoid poor diuretic response due to electrolyte depletion or dehydration. Next, renal perfusion should be optimised if possible and loop diuretics should be prescribed above their threshold dose. Addition of thiazide-type diuretics should be considered when a progressive decrease in loop diuretic efficacy is observed with prolonged use (i.e., the braking phenomenon). Furthermore, thiazide-type diuretics are a useful addition in patients with low glomerular filtration rate. However, they limit free water excretion and are relatively contraindicated in cases of hypotonic hyponatremia, where acetazolamide is the better option. Finally, ultrafiltration should be considered in patients with refractory diuretic resistance as persistent volume overload after decongestive treatment is associated with worse outcomes. Whether more upfront use of any of these individually tailored decongestion strategies is superior to monotherapy with loop diuretics remains to be shown by adequately powered randomised clinical trials.


1990 ◽  
Vol 258 (1) ◽  
pp. R77-R81
Author(s):  
R. S. Zimmerman ◽  
R. W. Barbee ◽  
A. Martinez ◽  
A. A. MacPhee ◽  
N. C. Trippodo

The present study was designed to determine whether atrial appendectomy would decrease the sodium excretion associated with pressor doses of arginine vasopressin (AVP) infusion in rats by decreasing circulating levels of atrial natriuretic factor (ANF). Ten to 21 days after either sham (n = 9) or bilateral atrial appendectomy (n = 13) AVP (19 ng.kg-1.min-1) was infused for 90 min in anesthetized Sprague-Dawley rats. Atrial appendectomy decreased circulating ANF levels from 469 +/- 70 pg/ml in sham-operated animals to 259 +/- 50 pg/ml (P less than 0.05) in atrial-appendectomized animals after 90 min of AVP infusion. Despite a reduction in circulating levels of ANF, sodium excretion, potassium excretion, and urine flow increased and were not affected by bilateral atrial appendectomy. Glomerular filtration rate and mean arterial pressure significantly increased in both groups of rats. The present study supports non-ANF factors such as increases in renal perfusion pressure and/or glomerular filtration rate as potential mechanisms in AVP-induced natriuresis.


2004 ◽  
Vol 51 (5) ◽  
pp. 1017-1025 ◽  
Author(s):  
L. Hermoye ◽  
L. Annet ◽  
Ph. Lemmerling ◽  
F. Peeters ◽  
F. Jamar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document