7 Tesla magnetic resonance imaging of caudal anterior cingulate and posterior cingulate cortex atrophy in patients with trigeminal neuralgia

2018 ◽  
Vol 51 ◽  
pp. 144-150 ◽  
Author(s):  
Hyeong Cheol Moon ◽  
Chan-A Park ◽  
Yeong-Jae Jeon ◽  
Soon Tae You ◽  
Hyun Man Baek ◽  
...  
2012 ◽  
Vol 117 (4) ◽  
pp. 868-877 ◽  
Author(s):  
Marieke Niesters ◽  
Najmeh Khalili-Mahani ◽  
Christian Martini ◽  
Leon Aarts ◽  
Joop van Gerven ◽  
...  

Background The influence of psychoactive drugs on the central nervous system has been investigated with positron emission tomography and task-related functional magnetic resonance imaging. However, it is not known how these drugs affect the intrinsic large-scale interactions of the brain (resting-state functional magnetic resonance imaging connectivity). In this study, the effect of low-dose S(+)-ketamine on intrinsic brain connectivity was investigated. Methods Twelve healthy, male volunteers received a 2-h intravenous S(+)-ketamine infusion (first hour 20 mg/70 kg, second hour 40 mg/70 kg). Before, during, and after S(+)-ketamine administration, resting-state brain connectivity was measured. In addition, heat pain tests were performed between imaging sessions to determine ketamine-induced analgesia. A mixed-effects general linear model was used to determine drug and pain effects on resting-state brain connectivity. Results Ketamine increased the connectivity most importantly in the cerebellum and visual cortex in relation to the medial visual network. A decrease in connectivity was observed in the auditory and somatosensory network in relation to regions responsible for pain sensing and the affective processing of pain, which included the amygdala, insula, and anterior cingulate cortex. Connectivity variations related to fluctuations in pain scores were observed in the anterior cingulate cortex, insula, orbitofrontal cortex, and the brainstem, regions involved in descending inhibition of pain. Conclusions Changes in connectivity were observed in the areas that explain ketamine's pharmacodynamic profile with respect to analgesia and psychedelic and other side effects. In addition, pain and ketamine changed brain connectivity in areas involved in endogenous pain modulation.


2000 ◽  
Vol 93 (6) ◽  
pp. 1019-1025 ◽  
Author(s):  
Scott L. Rauch ◽  
Hackjin Kim ◽  
Nikos Makris ◽  
G. Rees Cosgrove ◽  
Edwin H. Cassem ◽  
...  

Object. The goal of this study was to test hypotheses regarding changes in volume in subcortical structures following anterior cingulotomy.Methods. Morphometric magnetic resonance (MR) imaging methods were used to assess volume reductions in subcortical regions following anterior cingulate lesioning in nine patients. Magnetic resonance imaging data obtained before and 9 ± 6 months following anterior cingulotomy were subjected to segmentation and subcortical parcellation.Significant volume reductions were predicted and found bilaterally within the caudate nucleus, but not in the amygdala, thalamus, lenticular nuclei, or hippocampus. Subcortical parcellation revealed that the volume reduction in the caudate nucleus was principally referrable to the body, rather than the head. Furthermore, the magnitude of volume reduction in the caudate body was significantly correlated with total lesion volume.Conclusions. Taken together, these findings implicate significant connectivity between a region of anterior cingulate cortex (ACC) lesioned during cingulotomy and the caudate body. This unique data set complements published findings in nonhuman primates, and advances our knowledge regarding patterns of cortical—subcortical connectivity involving the ACC in humans. Moreover, these findings indicate changes distant from the site of anterior cingulotomy lesions that may play a role in the clinical response to this neurosurgical procedure.


2019 ◽  
Vol 16 (11) ◽  
pp. 1063-1071 ◽  
Author(s):  
Gonzague Foucault ◽  
Guillaume T Duval ◽  
Romain Simon ◽  
Olivier Beauchet ◽  
Mickael Dinomais ◽  
...  

Background: Vitamin D insufficiency is associated with brain changes, and cognitive and mobility declines in older adults. Method: Two hundred and fifteen Caucasian older community-dwellers (mean±SD, 72.1±5.5years; 40% female) received a blood test and brain MRI. The thickness of perigenual anterior cingulate cortex, midcingulate cortex and posterior cingulate cortex was measured using FreeSurfer from T1-weighted MR images. Age, gender, education, BMI, mean arterial pressure, comorbidities, use of vitamin D supplements or anti-vascular drugs, MMSE, GDS, IADL, serum calcium and vitamin B9 concentrations, creatinine clearance were used as covariables. Results: Participants with vitamin D insufficiency (n=80) had thinner total cingulate thickness than the others (24.6±1.9mm versus 25.3±1.4mm, P=0.001); a significant difference found for all 3 regions. Vitamin D insufficiency was cross-sectionally associated with a decreased total cingulate thickness (β=- 0.49, P=0.028). Serum 25OHD concentration correlated positively with the thickness of perigenual anterior (P=0.011), midcingulate (P=0.013) and posterior cingulate cortex (P=0.021). Conclusion: Vitamin D insufficiency was associated with thinner cingulate cortex in the studied sample of older adults. These findings provide insight into the pathophysiology of cognitive and mobility declines in older adults with vitamin D insufficiency.


2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Cezary Grochowski ◽  
Kamil Jonak ◽  
Marcin Maciejewski ◽  
Andrzej Stępniewski ◽  
Mansur Rahnama-Hezavah

Purpose: The aim of this study was to assess the volumetry of the hippocampus in the Leber’s hereditary optic neuropathy (LHON) of blind patients. Methods: A total of 25 patients with LHON were randomly included into the study from the national health database. A total of 15 patients were selected according to the inclusion criteria. The submillimeter segmentation of the hippocampus was based on three-dimensional spoiled gradient recalled acquisition in steady state (3D-SPGR) BRAVO 7T magnetic resonance imaging (MRI) protocol. Results: Statistical analysis revealed that compared to healthy controls (HC), LHON subjects had multiple significant differences only in the right hippocampus, including a significantly higher volume of hippocampal tail (p = 0.009), subiculum body (p = 0.018), CA1 body (p = 0.002), hippocampal fissure (p = 0.046), molecular layer hippocampus (HP) body (p = 0.014), CA3 body (p = 0.006), Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)–GC ML DG body (p = 0.003), CA4 body (p = 0.001), whole hippocampal body (p = 0.018), and the whole hippocampus volume (p = 0.023). Discussion: The ultra-high-field magnetic resonance imaging allowed hippocampus quality visualization and analysis, serving as a powerful in vivo diagnostic tool in the diagnostic process and LHON disease course assessment. The study confirmed previous reports regarding volumetry of hippocampus in blind individuals.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012098809
Author(s):  
Byeong H Oh ◽  
Hyeong C Moon ◽  
Aryun Kim ◽  
Hyeon J Kim ◽  
Chae J Cheong ◽  
...  

Background The pathology of Parkinson’s disease leads to morphological changes in brain structure. Currently, the progressive changes in gray matter volume that occur with time and are specific to patients with Parkinson’s disease, compared to healthy controls, remain unclear. High-tesla magnetic resonance imaging might be useful in differentiating neurological disorders by brain cortical changes. Purpose We aimed to investigate patterns in gray matter changes in patients with Parkinson’s disease by using an automated segmentation method with 7-tesla magnetic resonance imaging. Material and Methods High-resolution T1-weighted 7 tesla magnetic resonance imaging volumes of 24 hemispheres were acquired from 12 Parkinson’s disease patients and 12 age- and sex-matched healthy controls with median ages of 64.5 (range, 41–82) years and 60.5 (range, 25–74) years, respectively. Subgroup analysis was performed according to whether axial motor symptoms were present in the Parkinson’s disease patients. Cortical volume, cortical thickness, and subcortical volume were measured using a high-resolution image processing technique based on the Desikan-Killiany-Tourville atlas and an automated segmentation method (FreeSurfer version 6.0). Results After cortical reconstruction, in 7 tesla magnetic resonance imaging volume segmental analysis, compared with the healthy controls, the Parkinson’s disease patients showed global cortical atrophy, mostly in the prefrontal area (rostral middle frontal, superior frontal, inferior parietal lobule, medial orbitofrontal, rostral anterior cingulate area), and subcortical volume atrophy in limbic/paralimbic areas (fusiform, hippocampus, amygdala). Conclusion We first demonstrated that 7 tesla magnetic resonance imaging detects structural abnormalities in Parkinson’s disease patients compared to healthy controls using an automated segmentation method. Compared with the healthy controls, the Parkinson’s disease patients showed global prefrontal cortical atrophy and hippocampal area atrophy.


Sign in / Sign up

Export Citation Format

Share Document