Mechanical properties of a co-extruded Metallic Glass/Alloy (MeGA) rod—Effect of the metallic glass volume fraction

2010 ◽  
Vol 527 (16-17) ◽  
pp. 4197-4201 ◽  
Author(s):  
S. Gravier ◽  
J.J. Blandin ◽  
M. Suéry
Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 84 ◽  
Author(s):  
Ilya Okulov ◽  
Ivan Soldatov ◽  
Ivan Kaban ◽  
Baran Sarac ◽  
Florian Spieckermann ◽  
...  

Flash Joule-heating was applied to the Cu47.5Zr47.5Al5 metallic glass for designing fully crystalline metastable nanocomposites consisting of the metastable B2 CuZr and low-temperature equilibrium Cu10Zr7 phases. The onset of crystallization was in situ controlled by monitoring resistivity changes in the samples. The effect of heating rate and annealing time on the volume fraction of the crystalline phases and mechanical properties of the nanocomposites was studied in detail. Particularly, an increase of the heating rate and a decrease of the annealing time lead to a lower number of equilibrium Cu10Zr7 precipitates and an increase of tensile ductility. Tailoring of these non-equilibrium microstructures and mechanical properties may not be possible unless one starts with a fully glassy material that opens new perspectives for designing metastable nanomaterials with unique physical properties.


2010 ◽  
Vol 25 (11) ◽  
pp. 2192-2196 ◽  
Author(s):  
Yu Sun ◽  
Haifeng Zhang ◽  
Aimin Wang ◽  
Huameng Fu ◽  
Zhuangqi Hu ◽  
...  

Mg-based metallic glass interpenetrating phase composites (IPCs) containing 30–70 vol% titanium was fabricated in this study. The effects of reinforced phase volume fraction and interspace on the mechanical properties were investigated systematically. With increasing the volume fraction of titanium, the fracture strength and strain increased up to 1860 MPa and 44%, respectively. The results showed that the critical volume fraction (around 40%) of Ti metal should be required for significantly improving plasticity of IPC. Decreasing the interspace of the titanium phase could lead to enhancement of yield and fracture strength. The deformation behavior and strengthening mechanisms were discussed in detail.


2007 ◽  
Vol 561-565 ◽  
pp. 1345-1348 ◽  
Author(s):  
J. Kobata ◽  
Yorinobu Takigawa ◽  
Sung Wook Chung ◽  
Hiroshi Tsuda ◽  
Tokuteru Uesugi ◽  
...  

Microstructure and mechanical properties in friction stir processed (FSPed) Zr-based bulk metallic glass were investigated. The microstructure in the friction zone (FZ) exhibits an amorphous “band-like” structure with a small number of nanoscale crystalline particles. On the other hand, the microstructure in the FZ near the finish point of the process exhibits a large number of nanocrystalline particles in size of less than 20nm and amorphous phase. The difference of the microstructure in each FSP region is explained from the difference of the heat input by FSP. The hardness in each FSPed region shows higher value compared with that of other Zr-based balk metallic glasses with almost the same volume fraction of crystalline phase.


2008 ◽  
Vol 49 (7) ◽  
pp. 1558-1562 ◽  
Author(s):  
Dong-Myoung Lee ◽  
Seung-Yong Shin ◽  
Ju-Hyun Sun ◽  
Jin-Kyu Lee ◽  
Chi-Hwan Lee

2004 ◽  
Vol 19 (4) ◽  
pp. 1068-1076 ◽  
Author(s):  
Zan Bian ◽  
Tao Zhang ◽  
Hidemi Kato ◽  
Masashi Hasegawa ◽  
Akihisa Inoue

Mechanical properties and fracture characteristics of Zr-based bulk metallic glass (BMG) composites containing carbon nanotube (CNT) addition were investigated in detail. The interfacial reaction between the added CNTs and the glass matrix causes the formation of some V-shape nicks on the residual CNTs. These nicks have significant effect on the mechanical properties and fracture modes of the BMG composites. The compressive fracture strength increases with increasing the volume fraction of CNT addition at first, and starts to decrease gradually when the volume fraction of CNT addition is more than 5.0%. The fracture modes of the BMG composites also change from typical shear flow deformation behavior to completely embrittling fracture gradually. The V-shape nicks originating from the interfacial reaction are responsible for the decrease of fracture strength and the variation of fracture modes.


2014 ◽  
Vol 783-786 ◽  
pp. 1949-1953
Author(s):  
Tokunaga Hitoo ◽  
Fujita Kazutaka ◽  
Yokoyama Yoshihiko

Zr-Cu-Al bulk metallic glass matrix composite with the intermetallic compound ZrCu (B2) phase was fabricated. The effect of the ZrCu phase on mechanical properties and deformation behavior of the composite was investigated by compressive test. Also, phase transformation behavior of the ZrCu phase was analyzed by X-ray diffraction. Furthermore, macroscopic shape memory behavior was investigated using the composite by three point bending test. As the results, it was found that the mechanical properties of the composite depend on the volume fraction of the precipitated ZrCu phase. Compressive strength and yield stress of the composite decrease with increase of volume fraction of the ZrCu phase. On the other hand, plastic strain increases with increase of volume fraction of the ZrCu phase. In addition, it was confirmed that a stress-induced martensitic transformation of the ZrCu phase occurs by compressive stress loading. Furthermore, it was found that the composite with high volume fraction of the ZrCu phase exhibits shape memory effect.


2022 ◽  
Vol 580 ◽  
pp. 121373
Author(s):  
Saijyothi Nagireddi ◽  
B. Srinivasarao ◽  
D Arvindha Babu ◽  
SS Satheesh Kumar ◽  
Rajdeep Sarkar ◽  
...  

Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


Sign in / Sign up

Export Citation Format

Share Document