Residual stress characterization in low transformation temperature 13%Cr–4%Ni stainless steel weld by neutron diffraction and the contour method

2010 ◽  
Vol 527 (23) ◽  
pp. 6205-6210 ◽  
Author(s):  
Denis Thibault ◽  
Philippe Bocher ◽  
Marc Thomas ◽  
Michael Gharghouri ◽  
Marjolaine Côté
Author(s):  
Mitchell D. Olson ◽  
Michael R. Hill ◽  
Vipul I. Patel ◽  
Ondrej Muránsky ◽  
Thomas Sisneros

This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around −250 MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of −200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around −150 MPa. The results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.


2016 ◽  
Vol 853 ◽  
pp. 204-208 ◽  
Author(s):  
Lan Qing Tang ◽  
Hui Fang Li ◽  
Xiao Xiao Wang ◽  
Cai Fu Qian

In this paper, Finite Element Modeling (FEM) using Marc software was carried out to investigate the strain-strengthening effect on residual stress in 06Cr19Ni10 austenitic stainless steel weld joint made by MIG welding. The model prediction of residual stress was validated by X-ray Diffraction (XRD) method. It is found that there is a good agreement between the model predictions and the experimental results. The strain-strengthening can significantly improve the distribution of residual welding stress. Specifically in weld zone and the heat-affected zone (HAZ), residual stress decreases with increasing strain-strengthening level.


Author(s):  
John E. Broussard ◽  
Wayne Lunceford

Recent inspections have identified cracking in the core shroud that is atypical in that the cracks exhibit characteristics inconsistent with traditionally reported intergranular stress corrosion cracking (IGSCC) occurring within stainless steel weld heat-affected zones (HAZs). These flaws are oriented transverse to the weld and are observed to propagate significantly beyond the weld HAZ. This paper describes the investigations which have been performed to quantify the likely limits on growth of these “off-axis” SCC cracks. The investigation includes welding residual stress analysis to determine the stress field present adjacent to the weld and crack tip SIF calculations for the bivariant stress field.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Stephen Marlette ◽  
Paula Freyer ◽  
Michael Smith ◽  
Andrew Goodfellow ◽  
Xavier Pitoiset ◽  
...  

Full structural weld overlays (FSWOLs) have been used extensively as a repair/mitigation technique for primary water stress corrosion cracking in pressurizer nozzle dissimilar metal (DM) welds. To support an approved FSWOL design and safety submission for British Energy pressurized water reactor (PWR) nozzles, an in-depth evaluation was performed to assess the effects of a FSWOL on the through wall residual stress distribution in safety/relief pressurizer nozzles. Two safety/relief pressurizer nozzle mockups were fabricated based on British Energy’s PWR nozzle design. One mockup included the nozzle to safe-end DM weld and the safe-end to stainless steel weld, while the second mockup included the DM weld, the stainless steel weld, and a Westinghouse designed structural weld overlay. The mockups were fabricated utilizing materials and techniques that represented the plant specific nozzles as closely as possible and detailed welding parameters were recorded during fabrication. All welds were subsequently nondestructively evaluated (NDE). A thorough review of the detailed fabrication records and the NDE results was performed and several circumferential positions were selected on each mockup for subsequent residual stress measurement. The through wall residual stress profiles were experimentally measured through the DM weld centerline at the selected circumferential positions using both the deep-hole drilling (DHD) and incremental deep-hole drilling (iDHD) measurement techniques. In addition to experimental residual stress measurements, the through-wall residual stress profiles were simulated using a 2D axisymmetric ansys™ finite element (FE) model. The model utilized the application of temperature constraints on the weld elements to simulate the thermal welding cycle which greatly simplified the simulation as compared with detailed heat source modeling methods. Kinematic strain hardening was used for material modeling of the weld and base metals. A range of residual weld stress profiles was calculated by varying the time at which the temperature constraints were applied to the model. The simulation results were compared with the measurement results. It was found that the effects of the FSWOL were principally threefold. Specifically, the FSWOL causes a much deeper compressive stress field, i.e., the overlay shifts tension out toward the outside diameter (OD) surface. Furthermore, the FSWOL reduces tension in the underlying dissimilar metal weld, and finally, the FSWOL causes higher peak compressive and tensile residual stresses, both of which move deeper into the nozzle wall after the overlay is applied. Relatively good agreement was observed between the FE results and the measurements results.


Author(s):  
Nida Naveed ◽  
Foroogh Hosseinzadeh ◽  
Jan Kowal

In pressure vessels stainless steel weld-overlay cladding is a widely used technique to provide a protective barrier between the corrosive environment and the ferritic low alloy base metal. While the cladding layers enhance corrosion resistance, the induced residual stresses due to the deposition of weld layers are of major concern. It is of paramount importance to understand how residual stresses interact with service loading when the vessel is pressurized. Therefore, knowledge of the initial residual stresses due to cladding is an essential input for structural integrity assessment of pressure vessels. In the present paper the Contour Method was conducted to measure residual stresses in an austenitic steel cladded plate that was fabricated from a ferritic steel base plate with three layers of austenitic stainless steel weld metal cladding deposited on the top surface. The Contour Method was chosen for various reasons. First, it provides a full 2D variation of residual stresses over the plane of interest. Second, it is not limited by the thickness of components or microstructural variations and finally it should potentially capture the variation of residual stresses in each individual weld beads and due to the possible phase transformation in the ferritic base material. The map of longitudinal residual stresses was measured by sectioning the test component along a transverse plane at mid-length. The measured residual stresses were in good agreement with published results in the open literature.


Author(s):  
P. John Bouchard ◽  
Mark Turski ◽  
Mike C. Smith

Arc-welding involves the deposition of molten filler metal and the localised input of intense heat. The surrounding parent material and, in the case of multi-pass welds, previously deposited weld metal, undergoes complex thermo-mechanical cycles involving elastic, plastic, creep and viscous deformations. These processes result in the development of large residual stress gradients around the welded region, which can be particularly detrimental to the structural integrity of plant components. The present study examines aggregated weld bead start and stop stress concentration effects in a three pass slot weld specimen that was designed to represent a multi-pass weld repair (without any original weld). The specimen design comprised a Type 316L stainless steel base-plate of nominal dimensions (300 × 200 × 25) mm3 with a 100 mm long by 10 mm deep central slot filled with 3 stringer manual metal arc weld beads, laid one on top of another. Residual stresses in three orthogonal directions were measured by neutron diffraction on a plane cutting through the centre of the plate, parallel to the welding direction, to show concentrations of tensile stress at both the weld start and stop positions. The transverse component of residual stress on the same plane in a second, nominally identical, specimen was mapped using the contour method. By applying two independent measurement techniques the residual stress field within the specimen type was determined with an increased level of confidence. Maximum transverse stress values of about 200 MPa at the weld start position and 300 MPa at the weld stop position were found. Peak tensile stresses in the longitudinal direction of 370 and 460 MPa were measured using neutron diffraction at the weld start and stop positions, respectively. The stresses measured by the contour method and neutron diffraction were in reasonable overall agreement with each other. However, the comparisons pointed to the possible presence of cutting artefacts in the contour results.


Sign in / Sign up

Export Citation Format

Share Document