Evaluating the room temperature mechanical properties of age hardened AZ80 magnesium alloy using shear punch testing method

2014 ◽  
Vol 606 ◽  
pp. 360-369 ◽  
Author(s):  
H.R. Abedi ◽  
A. Zarei-Hanzaki ◽  
M. Bagherzadeh Biucki ◽  
M. Emamy
2011 ◽  
Vol 291-294 ◽  
pp. 1082-1086
Author(s):  
Yao Jin Wu ◽  
Zhi Ming Zhang ◽  
Bao Cheng Li ◽  
Bao Hong Zhang ◽  
Jian Min Yu ◽  
...  

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperature (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure changes of AZ80 magnesium alloy have been investigated through tensile test and via ZEISS digital metallographic microscope observation. Research indicates that the alloy’s plasticity gradually decreases as the temperature increases, and that the alloy’s tensile strength varies with the extrusion ratio. At 330°C, the alloy’s particle grain is small and a small amount of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390 Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, both the tensile strength and plasticity increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


2012 ◽  
Vol 479-481 ◽  
pp. 27-30
Author(s):  
Ju Mei Zhang ◽  
Zhi Hu Wang ◽  
Wan Chang Sun ◽  
Li Bin Niu

The atomic diffusion and mechanical properties of as-cast AZ80 magnesium alloy after solution treatment at different time were studied by OM,SEM,EDS as well as tensile testing. The results show that the coarse β-Mg17Al12 phase distributed along the grain boundaries as net microstructure is almost dissolved after solution treatment, and the content of Al that in the α-Mg matrix is well distributed with the solution time prolonged. Because of the β-Mg17Al12 phase reducing and granulating, the function of precipitates phase strengthening was depressed and the hardness (HB) of alloy dropped obviously. However, the tensile strength(σb ) and elongation(δ) enhanced remarkably and the yield strength (σ0.2) decreased slightly.


2007 ◽  
Vol 26-28 ◽  
pp. 141-144
Author(s):  
Ippei Takeuchi ◽  
Kinji Hirai ◽  
Yorinobu Takigawa ◽  
Tokuteru Uesugi ◽  
Kenji Higashi

The effect of Ca and Sr content on the microstructure and mechanical properties of a cast AZ91 magnesium alloy is investigated. Ca and Sr additions in AZ91 magnesium alloy are expected high creep resistance. The microstructure of the alloy exhibits the dendritic α-matrix and the second-phases forming networks on the grain boundary. Tensile tests at elevated temperatures between 448 and 523K reveal that the creep resistance was improved with increasing the additional amount of Ca, especially more than 1.0wt%. From the perspective of grain refinement effect, it is expected that the additions of Ca and Sr to AZ91 magnesium alloy not only improve creep resistance but also improve mechanical properties at room temperature.


2011 ◽  
Vol 120 ◽  
pp. 475-478 ◽  
Author(s):  
Yao Gui Wang ◽  
Quan An Li ◽  
Qing Zhang

The effects of antimony on the mechanical properties of magnesium alloy ZA63 have been investigated. The results show that the addition of 0.75wt.% antimony can cause the formation of Mg3Sb2 phase and enhance the mechanical properties of magnesium alloy ZA63 at room temperature and elevated temperature.


2014 ◽  
Vol 881-883 ◽  
pp. 1396-1399
Author(s):  
Chen Jun ◽  
Quan An Li

The microstructure and mechanical properties of magnesium alloy AZ61wtih1% Sn addition has been studied in this paper. The results show that the addition of 1% Sn can refine the grain size and improve the microstructure morphology of β-Mg17Al12 phase. The addition of Sn can cause the formation of Mg2Sn phase in AZ61 alloy, which can effectively enhance the mechanical properties of magnesium alloy AZ61 at room temperature and 150°C.


2010 ◽  
Vol 433 ◽  
pp. 241-246 ◽  
Author(s):  
Yoshimasa Takayama ◽  
Itsuki Takeda ◽  
Toshiya Shibayanagi ◽  
Hajime Kato ◽  
Kunio Funami

Superplasticity in an AZ80 magnesium alloy subjected to friction stir processing (FSP) has been investigated. FSP was carried out at two traveling speeds of 150mm/min and 300mm/min for grain refinement. Optical microscopy on cross section to processing direction revealed obvious differences in size and feature between the stir zones at the two traveling speeds. The hardness of FSPed sample at the room temperature was about 30HV higher than that of as-received one. The maximum stress of the FSPed sample was reduced remarkably at lower strain rates compared with those of the as-received one at 573K and 673K. On the other hand, the elongation to failure of the FSPed sample showed ten to thirteen times larger than that of the as-received one at 573K and low strain rates. Further surface morphology near the fracture tip was observed by scanning electron microscopy to discuss deformation mechanism at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document