Hot deformation and static softening behavior of vanadium microalloyed high manganese austenitic steels

2016 ◽  
Vol 651 ◽  
pp. 358-369 ◽  
Author(s):  
L. Llanos ◽  
B. Pereda ◽  
B. Lopez ◽  
J.M. Rodriguez-Ibabe
2019 ◽  
Vol 792 ◽  
pp. 1112-1121 ◽  
Author(s):  
Kunyang Chen ◽  
Jie Tang ◽  
Fulin Jiang ◽  
Jie Teng ◽  
Dingfa Fu ◽  
...  

2014 ◽  
Vol 783-786 ◽  
pp. 713-720
Author(s):  
Paolo Matteis ◽  
Giorgio Scavino ◽  
R. Sesana ◽  
F. D’Aiuto ◽  
Donato Firrao

The automotive TWIP steels are high-Mn austenitic steels, with a relevant C content, which exhibit a promising combination of strength and toughness, arising from the ductile austenitic structure, which is strengthened by C, and from the TWIP (TWinning Induced Plasticity) effect. The microstructure of the low-alloy Q&P steels consists of martensite and austenite and is obtained by the Quenching and Partitioning (Q&P) heat treatment, which consists of: austenitizing; quenching to the Tqtemperature, comprised between Msand Mf; soaking at the Tppartitioning temperature (Tpbeing equal to or slightly higher than Tq) to allow carbon to diffuse from martensite to austenite; and quenching to room temperature. The fatigue behavior of these steels is examined both in the as-fabricated condition and after pre-straining and welding operations, which are representative of the cold forming and assembling operations performed to fabricate the car-bodies. Moreover, the microscopic fracture mechanisms are assessed by means of fractographic examinations.


2021 ◽  
Vol 1016 ◽  
pp. 832-839
Author(s):  
Beatriz López ◽  
Beatriz Pereda ◽  
Felipe Bastos ◽  
J.M. Rodriguez-Ibabe

The aim of this work is to investigate the dissolution behavior of Nb in hot charging hot rolling configurations. To do so, an indirect experimental procedure is used to quantify the amount of Nb present in solution before rolling. The method is based on the effect of dissolved Nb on static recrystallization kinetics due to its solute drag effect. After different thermal cycles, simulating cold and hot charging conditions, double hit torsion tests have been performed with a 0.23%C steel microalloyed with 0.03% Nb. By means of these tests, the static softening behavior has been determined. Comparison of the recrystallization times allows indirect evaluation of the amount of Nb in solid solution after each treatment. The results have been correlated with the precipitation state of the samples.


2020 ◽  
Vol 990 ◽  
pp. 36-43
Author(s):  
Dian Xiu Xia ◽  
Heng Ke Du ◽  
Xin En Zhang ◽  
Xiu Cheng Li ◽  
Ying Chao Pei

The MMS-200 thermal simulation testing machine was used to study the static softening behavior of low carbon high niobium microalloyed steel. The effect of niobium to the static recrystallization softening behavior of the microalloy steel had been analyzed by establishing the kinetics model of static recrystallization and the micro-morphology of precipitates. The results indicated that: the static softening behavior of the tested steel significantly influenced by the deformation temperature and the interval pass time of the rolling processing. At relatively high deformation temperature and long interval pass time, the ratio of static softening was increased. Then the deformation temperature was lower to 950°C, and the static softening behavior of the test steel was ceased. But when the deformation temperature was higher than 1000°C, the static softening behavior of the test steel completely occurred. The activation energy of the test steel was 325·mol-1 by the established model calculated.


Sign in / Sign up

Export Citation Format

Share Document