Responses of the corroded surface layer of austenitic stainless steel to different corrosive conditions under cavitation

2016 ◽  
Vol 671 ◽  
pp. 118-126 ◽  
Author(s):  
Xingyue Yong ◽  
Ning Xiao ◽  
Hanjie Shen ◽  
Yili Song
2013 ◽  
Vol 634-638 ◽  
pp. 2955-2959 ◽  
Author(s):  
Lie Shen ◽  
Liang Wang ◽  
Jiu Jun Xu ◽  
Ying Chun Shan

The fine grains and strain-induced martensite were fabricated in the surface layer of AISI 304 austenitic stainless steel by shot peening treatment. The shot peening effects on the microstructure evolution and nitrogen diffusion kinetics in the plasma nitriding process were investigated by optical microscopy and X-ray diffraction. The results indicated that when nitriding treatments carried out at 450°C for times ranging from 0 to 36h, the strain-induced martensite transformed to supersaturated nitrogen solid solution (expanded austenite), and slip bands and grain boundaries induced by shot peening in the surface layer lowered the activation energy for nitrogen diffusion and evidently enhanced the nitriding efficiency of austenitic stainless steel.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 276 ◽  
Author(s):  
Cong Wang ◽  
Jing Han ◽  
Jiyun Zhao ◽  
Yuanming Song ◽  
Jiaxiang Man ◽  
...  

The low hardness and poor wear resistance of AISI 316 L austenitic stainless-steel sabotage its outer appearance and shorten its service life when it is subjected to sliding. In this paper, the single-pass ultrasonic surface rolling (USR) process was used to modify the surface of 316 L austenitic stainless steel. A nanostructured surface layer with a depth span of 15 μm was fabricated. Dry wear tests of USR samples were performed on a ring-on-block tester at room temperature, and the results were compared with those for the as-received sample. The USR sample showed a significant reduction in wear mass loss and an improved hardness, as well as a decreased surface roughness. The detailed wear mechanism was also investigated by SEM observations of the worn surfaces. It was indicated that oxidation and abrasive wear, accompanied by mild adhesion, dominated the wear of USR 316 L stainless steel at both low and high speeds. The superior wear performance of USR 316 L was attributed to its nanostructured surface layer, which was characterized by a high hardness and thereby suppressed the severe abrasive wear. The results provided an alternative approach to modifying the surface of 316 L stainless steel, without changing its surface chemical components.


2013 ◽  
Vol 768-769 ◽  
pp. 550-556 ◽  
Author(s):  
Ke Zhan ◽  
Chuan Hai Jiang ◽  
Henry Pan

Shot peening is an important surface treatment which can induce compressive residual stress and refine micro-structure in the deformed surface layer. In this paper, the conventional shot peening, dual shot peening and triple shot peening have been applied to S30432 austenitic stainless steel. The residual stress and micro-structure in the deformed layer were investigated by X-ray diffraction method. The results revealed that a compressive residual stress field was induced in the deformed layer for all shot peening conditions. As the shot peening step increased, the compressive residual stresses increased in near surface layer, and then deceased faster in deeper deformed layer. In terms of microstructure, the domain size increased, while the micro-strain decreased with the depth increasing in the deformed layer. Compare with the effect of three different shot peening method, triple shot peenng is more effective to optimize the compressive residual stress, microstructure and micro-hardness of S30432 austenitic stainless steel.


Sign in / Sign up

Export Citation Format

Share Document