Fabricating Ti2AlNb sheet with high tensile strength and good ductility by hot packed rolling the spark plasma sintered pre-alloyed powder

2021 ◽  
Vol 801 ◽  
pp. 140392
Author(s):  
Guofeng Wang ◽  
Xiaochong Sui ◽  
Qing Liu ◽  
Yongkang Liu
Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract Lucefin Group C30, C30E, and C30R are medium-carbon, non-alloy steels that are used in the normalized, cold worked, or quenched and tempered condition. C30E and C30R may also be flame or induction hardened. C30, C30E, and C30R are widely used for small, moderately stressed parts, where higher strength levels are needed than can be achieved in the lower carbon grades, and also where toughness is more important than high tensile strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-206. Producer or source: Lucefin S.p.A.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Vasco 9-4-20 (0.20 wt% C) is a premium quality aircraft steel that combines high tensile strength with good fracture toughness. It is a heat-treatable alloy capable of developing an ultimate tensile strength greater than 190 ksi. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: SA-489. Producer or source: Vasco, An Allegheny Teledyne Company.


Alloy Digest ◽  
1976 ◽  
Vol 25 (12) ◽  

Abstract NJZ Alloy No. 55 is a zinc-cadmium alloy characterized by high tensile strength and hardness but low ductility. It has high stiffness and resiliency but low drawing and forming characteristics. Its applications include hardware and medallions. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep and fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Zn-30. Producer or source: New Jersey Zinc Company.


ACS Omega ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 2890-2898
Author(s):  
Xiaojiao Jiao ◽  
Jiangling Liu ◽  
Jing Jin ◽  
Fei Cheng ◽  
Yunxin Fan ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1048
Author(s):  
Yingchao Guo ◽  
Yongfeng Liang ◽  
Junpin Lin ◽  
Fei Yang

Nano-Y2O3 reinforced Ti-47.7Al-7.1Nb-(V, Cr) alloy was fabricated by a powder metallurgy route using spark plasma sintering (SPS), and the influence of nano-Y2O3 contents on the microstructure and mechanical properties were investigated systematically. The results revealed that the ultimate tensile strength and elongation of the alloy were 570 ± 28 MPa and 1.7 ± 0.6% at 800 °C, 460 ± 23 MPa and 6.1 ± 0.4% at 900 °C with no nano-Y2O3, 662 ± 24 MPa and 5.5 ± 0.5% at 800 °C, and 466 ± 25 MPa and 16.5 ± 0.8% at 900 °C with 0.05 at% nano-Y2O3 addition, respectively. Due to the fine-grain strengthening and the second-phase strengthening, both tensile strength and elongation of the high-Nb TiAl alloy were enhanced with the addition of nano-Y2O3.


2015 ◽  
Vol 1134 ◽  
pp. 56-60 ◽  
Author(s):  
Siti Aisyah Jarkasi ◽  
Dzaraini Kamarun ◽  
Azemi Samsuri ◽  
Amir Hashim Md Yatim

Fillers play important roles in enhancing mechanical properties of NR latex films. The effect of filler dispersion and amount of dispersing agent to the tensile strength and tearing energy of NR latex films were investigated in this study. The studies were carried out by (i) varying the amount of dispersing agent (Anchoid) added which is an anionic surfactant; and (ii) varying the speed of stirring during mixing of latex with compounding ingredients. It was observed that tensile strength and tearing energy were affected by both factors listed. In the case of NR latex film filled with 10 pphr of carbon black (Super Abrasion Furnace, SAF), the optimum stirring speed was 400 rpm and the optimum amount of surfactant was in the range of 5 to 10 % by weight. High tensile strength ranging from 29 - 31 MPa and high tearing energies ranging from 90.6 - 111.0 kJ/m2were achieved from optimization of these two factors; rendering their importance.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2018 ◽  
Vol 122 (1255) ◽  
pp. 1352-1370 ◽  
Author(s):  
H. Liu ◽  
B.G. Falzon ◽  
G. Catalanotti ◽  
W. Tan

ABSTRACTCarbon fibres with high tensile strength are being increasingly utilised in the manufacture of advanced composite aerostructures. A Modified Compact Tension (MCT) specimen is often deployed to measure the longitudinal intralaminar fracture toughness but a high tensile strength often leads to premature damage away from the crack tip. We present an approach whereby the MCT specimen is supported by external fixtures to prevent premature damage. In addition, we have developed a novel measurement technique, based on the fibre failure strain and C-scanning, to determine the crack length in the presence of surface sublaminate delamination which masks the crack tip location. A set of cross-ply specimens, with a ((90/0)s)4 layup, were manufactured from an IMS60/epoxy composite system Two different data reduction schemes, compliance calibration and the area method, are used to determine the fibre-dominated initiation and propagation intralaminar fracture toughness values. Propagation values of fracture toughness were measured at 774.9 ± 5.2% kJ/m2 and 768.5 ± 4.1% kJ/m2, when using the compliance calibration method and the area method, respectively. Scanning Electron Microscopy (SEM) is carried out on the fracture surface to obtain insight into the damage mechanism of high-tensile-strength fibre-reinforced unidirectional composites. The measured tensile fracture toughness value is used in a fully validated computational model to simulate the physical test.


Sign in / Sign up

Export Citation Format

Share Document