Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials

Author(s):  
Mingyong Jia ◽  
Fei Chen ◽  
Yueqi Wu ◽  
Like Xu ◽  
Qiang Shen ◽  
...  
Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 286 ◽  
Author(s):  
Lipeng Deng ◽  
Shuhan Li ◽  
Liming Ke ◽  
Jinhe Liu ◽  
Jidong Kang

Keyhole at the end of a conventional friction stir welded (FSW) joint is one of the major concerns in certain applications. To address this issue, a novel keyhole refilling technique was developed for conventional friction stir spot welding (FSSW) using resistance spot welding (RSW). A three-phase secondary rectifier resistance welder was adapted for the refill of the keyhole in the 1.5 mm + 1.5 mm friction stir spot welded 2024-T4 aluminum alloy joint. The microstructure and tensile shear fracture behavior were compared for both the unfilled and refilled specimens. The results show that the plug and keyhole are dominated by solid state welding with some localized zones by fusion welding. The refill process significantly improved the maximum load capacity in tensile shear testing as the corona ring is enlarged leading to a larger bonding area. Moreover, the tensile shear fracture occurs in the refilled FSSW specimens at the corona bonding zone, while the fracture occurs at the hook zone in the unfilled keyhole.


2011 ◽  
Vol 689 ◽  
pp. 33-38
Author(s):  
Ze Feng Liu ◽  
Qing Sen Meng ◽  
Shao Ping Chen ◽  
L.J. Liang ◽  
P.F. Xue

TiB2-TiC+Ni/TiAl/Ti graded materials were prepared by field-activated pressure-assisted synthesis process (FAPAS) and the mechanical properties and residual stress were investigated. Shear fracture that occurs at the interface between the cermets and TiAl with the maximum shear strength of 85.88 MPa. The residual stress and deformation induced by the thermal effect of chemical reaction and Joule heat during the synthesis process were analyzed by nonlinear finite element simulation. It is demonstrated that the maximum equivalent residual stress locate in the transition layer between the ceramics and TiAl, consistent with the shear test result.


2018 ◽  
Vol 18 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Majid Reza Ayatollahi ◽  
Seyed Alireza Mirmohammadi ◽  
Hadi Asgharzadeh Shirazi

2021 ◽  
Vol 11 (7) ◽  
pp. 1207-1213
Author(s):  
Chunlei Fan ◽  
Huanran Wang ◽  
Dongfang Ma

The tensile shear fracture behavior of solder joints under impact load influences the whole vehicle’s safety substantially. This paper takes the QP980 steel resistance spot welding (RSW) structure as the research object to study the tensile-shear fracture behavior of the RSW structure under tensile-shear loading. The microstructure observation of the welded spot shows that the metallographic structure is the martensite. The porosity defects in the melting zone are the primary defect reflecting the obvious plate-cracks on both sides of the nugget. The paper demonstrates the Vickers hardness test result of the spot-welded zone. According to the test, the micro-hardness distribution result shows that the higher the martensite, the greater the hardness. A softened zone emerges adjacent to the heat-affected zone on the welded base material interface. The quasi-static and dynamic tensile-shear tests on the QP980 steel RSW lap-joint specimens show that the fracture on the BM is adjacent to the welded spot under quasi-static loading but close to the heat-affected zone under dynamic loading. Under dynamic loading, the weld seam and softened zone of the welded spot have a direct influence on the fracture. On the recovered specimen’s fractured section, there are a large number of apparent dimples on the section of the BM under quasi-static loading and the section of the HAZ under dynamic loading with nucleation, growth, and aggregation of cavitation, resulting in ductile fracture.


Sign in / Sign up

Export Citation Format

Share Document