Computational study of the effect of carbon vacancy defects on the Young's modulus of (6, 6) single wall carbon nanotube

2011 ◽  
Vol 176 (9) ◽  
pp. 693-700 ◽  
Author(s):  
Elvis G. Fefey ◽  
Ram Mohan ◽  
Ajit Kelkar
2014 ◽  
Vol 1752 ◽  
pp. 59-63
Author(s):  
Junyoung Lim ◽  
Maryam Jalali ◽  
Stephen A. Campbell

ABSTRACTElectrophoretic deposition enables the rapid deposition of single wall carbon nanotube films at room temperature. An accurate, reproducible film thickness can be obtained by controlling electric field strength, suspension concentration, and time. To investigate the electrical and mechanical properties of such films, we recorded electric resistance and Young’s modulus using I-V characterization and a nanoindenter, respectively. The measured resistivity of the films varied from 2.14 × 10-3 to 7.66 × 10-3 Ω·cm, and the Young’s modulus was 4.72 to 5.67 GPa, independent of film thickness from 77 to 134 nm. These results indicated that the mechanical and electrical properties of film are comparable with previously reported methods such as layer by layer deposition even though we achieved much higher deposition rates. We also measured the film mass density which is usually unrecorded even though it is an important parameter for MEMS/NEMS device actuation. The film density was found with conventional thickness measurement and Rutherford backscattering spectrometry. It varied from 0.12 to 0.54 g/cm3 as the film thickness increased. This method could be extended to applications of CNT films for flexible electronics or high frequency RF MEMS devices.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5872-5877 ◽  
Author(s):  
JEEHYANG HUH ◽  
HOON HUH

Simulations of single-wall carbon nanotube(SWCNT)s having a different chiral vector under axial compression were carried out based on molecular dynamics to investigate the effect of the helicity on the buckling behavior. Calculation was performed at room temperature for (8,8) armchair, (14,0) zigzag and (6,10) chiral single-wall carbon nanotubes. The Tersoff potential was used as the interatomic potential since it describes the C - C bonds in carbon nanotubes reliably. A conjugate gradient (CG) method was used to obtain the equilibrium configuration. Compressive force was applied at the top of a nanotube by moving the top-most atoms downward with the constant velocity of 10m/s. The buckling load, the critical strain, and the Young's modulus were calculated from the result of MD simulation. A zigzag carbon nanotube has the largest Young's modulus and buckling load, while a chiral carbon nonotube has the lowest values.


Author(s):  
Zhongqu Long ◽  
Yongrui Wang ◽  
Kankan Cong ◽  
G. Timothy Noe II ◽  
Junichiro Kono ◽  
...  

2021 ◽  
Author(s):  
Juhi Srivastava ◽  
Anshu Gaur

The phonon mode frequencies of SWNT and SLG in hybrid nanostructures are sensitive to various interactions, such as vdW forces, structural deformation and/or charge transfer between SWNT and SLG.


Sign in / Sign up

Export Citation Format

Share Document