Nanoceria: Metabolic interactions and delivery through PLGA-encapsulation

2020 ◽  
Vol 114 ◽  
pp. 111003
Author(s):  
Apoorva Mehta ◽  
Bradley Scammon ◽  
Kevin Shrake ◽  
Mikhail Bredikhin ◽  
Dmitry Gil ◽  
...  
1982 ◽  
Vol 37 (9) ◽  
pp. 839-844 ◽  
Author(s):  
Karel Sláma

In larval and pupal stages of several insect species the changes in total body metabolism appear to be inversely proportional to the course of ecdysteroid titres. The largest peaks of ecdysteroid occur exactly at the time of the lowest metabolic rates. These relationships are consequences of the developmental programming; ecdysteroid has no direct antimetabolic action. The problem of ecdysteroid-metabolic interactions has been discussed in relation to possible homeostatic function of ecdysteroids in insect development.


2021 ◽  
Vol 70 ◽  
pp. 241-247
Author(s):  
Davar Abedini ◽  
Sébastien Jaupitre ◽  
Harro Bouwmeester ◽  
Lemeng Dong

2020 ◽  
Vol 22 (1) ◽  
pp. 141
Author(s):  
George Anderson

This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven ‘backward’ conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.


2021 ◽  
Vol 332 ◽  
pp. 125119
Author(s):  
Sijie Huang ◽  
Mengmeng Shen ◽  
Zhiyong Jason Ren ◽  
Houkai Wu ◽  
Hao Yang ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 349
Author(s):  
Sara Tedesco ◽  
Alexander Erban ◽  
Saurabh Gupta ◽  
Joachim Kopka ◽  
Pedro Fevereiro ◽  
...  

In viticulture, grafting is used to propagate Phylloxera-susceptible European grapevines, thereby using resistant American rootstocks. Although scion–rootstock reciprocal signaling is essential for the formation of a proper vascular union and for coordinated growth, our knowledge of graft partner interactions is very limited. In order to elucidate the scale and the content of scion–rootstock metabolic interactions, we profiled the metabolome of eleven graft combination in leaves, stems, and phloem exudate from both above and below the graft union 5–6 months after grafting. We compared the metabolome of scions vs. rootstocks of homografts vs. heterografts and investigated the reciprocal effect of the rootstock on the scion metabolome. This approach revealed that (1) grafting has a minor impact on the metabolome of grafted grapevines when tissues and genotypes were compared, (2) heterografting affects rootstocks more than scions, (3) the presence of a heterologous grafting partner increases defense-related compounds in both scion and rootstocks in shorter and longer distances from the graft, and (4) leaves were revealed as the best tissue to search for grafting-related metabolic markers. These results will provide a valuable metabolomics resource for scion–rootstock interaction studies and will facilitate future efforts on the identification of metabolic markers for important agronomic traits in grafted grapevines.


2021 ◽  
Vol 55 (8) ◽  
pp. 5117-5127
Author(s):  
Hongna Zhang ◽  
Yanshan Liang ◽  
Pengfei Wu ◽  
Xianru Shi ◽  
Guodong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document