Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution

2021 ◽  
Vol 21 ◽  
pp. 100533
Author(s):  
R. Ediati ◽  
W. Aulia ◽  
B.A. Nikmatin ◽  
A.R.P. Hidayat ◽  
U.M. Fitriana ◽  
...  
2020 ◽  
Vol 16 ◽  
Author(s):  
Kirubanandam Grace Pavithra ◽  
Vasudevan Jaikumar ◽  
Ponnusamy Senthil Kumar ◽  
PanneerSelvam SundarRajan

Background: Many antibiotics were widely used as medication based on their distinctive features. Among them, sulphonamides were commonly used, however their recalcitrant nature makes them difficult to dispose. Hence, their interaction with environment and analytic technique requires considerable attention globally. Objective: Therefore, this review aimed to provide detailed discussion about environmental as well as human health behaviour and analytic techniques corresponding to sulphonamides. Methods: Various results and discussion were extracted from technical journals and books published by different researchers from all over the world. The cited bibliographic references were intentionally investigated in order to extract relevant information related to proposed work. Results: In this review, the determination techniques such as UV-spectroscopy, Enthalpimetry, Immunosensor, Chromatography, Chemiluminescence, Photoinduced fluorometric determination, Capillary electrophoresis for sulphonamide determination were discussed in detail. Among them, High performance liquid chromatography (HPLC) and UV-spectroscopy was effective and extensively used for screening sulphonamide. Conclusion: Knowing the quantification and behaviour of sulphonamide in aqueous solution is mandatory to opt the suitable wastewater treatment required. Hence, choosing appropriate high precision and feasible screening techniques is necessary, which can be attained with this review.


Author(s):  
Xiaofei Luo ◽  
Shuai Hu ◽  
Jingyou Yuan ◽  
Huan Yang ◽  
Shaoyun Shan ◽  
...  

The increasingly severe issues of antibiotic-induced pollution greatly stimulate the development of high-performance advanced adsorbents. In this contribution, a novel Fe-centered metal-organic aerogel (Fe-MOA) was synthesized through the use of...


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Ramona B. J. Ihlenburg ◽  
Anne-Catherine Lehnen ◽  
Joachim Koetz ◽  
Andreas Taubert

New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3783
Author(s):  
Jian-Qing Qiu ◽  
Huan-Qing Xie ◽  
Ya-Hao Wang ◽  
Lan Yu ◽  
Fang-Yuan Wang ◽  
...  

The removal of organic pollutants using green environmental photocatalytic degradation techniques urgently need high-performance catalysts. In this work, a facile one-step hydrothermal technique has been successfully applied to synthesize a Nb2O5 photocatalyst with uniform micro-flower structure for the degradation of methyl orange (MO) under UV irradiation. These nanocatalysts are characterized by transmission and scanning electron microscopies (TEM and SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) method, and UV-Vis diffuse reflectance spectroscopy (DRS). It is found that the prepared Nb2O5 micro-flowers presents a good crystal phases and consist of 3D hierarchical nanosheets with 400–500 nm in diameter. The surface area is as large as 48.6 m2 g−1. Importantly, the Nb2O5 micro-flowers exhibit superior catalytic activity up to 99.9% for the photodegradation of MO within 20 mins, which is about 60-fold and 4-fold larger than that of without catalysts (W/O) and commercial TiO2 (P25) sample, respectively. This excellent performance may be attributed to 3D porous structure with abundant catalytic active sites.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10300-10308
Author(s):  
Hui Feng ◽  
Siqi Feng ◽  
Niu Tang ◽  
Songbai Zhang ◽  
Xiangyang Zhang ◽  
...  

New idea for the low cost synthesis of high performance photocatalysts for the photodegradation of organic pollutants in aqueous solution.


Author(s):  
Nurul Syazana Abdul Halim ◽  
Nor Shahirul Umirah Idris ◽  
Nor Fazliani Shoparwe ◽  
Tee Mei Chee

2015 ◽  
Vol 15 ◽  
pp. 596-601 ◽  
Author(s):  
Fella-Naouel Allouche ◽  
Nouredine Yassaa ◽  
Hakim Lounici

2003 ◽  
Vol 81 (10) ◽  
pp. 1044-1050 ◽  
Author(s):  
Zhirong Zhu ◽  
Ruan Tain ◽  
Colin Rhodes

In this paper, the decomposition of H3PW12O40 in aqueous solution or in mixed solutions of water–ethanol or water–acetone is investigated by potentiometric titration and 31P NMR. Identification of the products from H3PW12O40 decomposition over a pH range of 1–12 was achieved using preparation high performance liquid chromatography (Pre-HPLC) combined with IR, UV–vis spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP). It is found that H3PW12O40 in aqueous solution decomposes in a stepwise fashion with increasing pH, with the following solution compositions: [PW12O40]3– (at pH ~ 1) [Formula: see text] [PW12O40]3– + [P2W21O71]6– + [PW11O39]7– (at pH 2.2) [Formula: see text] [PW12O40]3– + [P2W21O71]6– + [PW11O39]7– + [P2W18O62]6– + [P2W19O67]10– (at pH 3.5) [Formula: see text] [P2W21O71]6– + [PW11O39]7– + [P2W18O62]6– (at pH 5.4) [Formula: see text] [PW9O34]9– (at pH 7.3) [Formula: see text] PO43– + WO42– (pH > 8.3). In the first stages at pH < 8, H3PW12O40 decomposes partially with removal of W=O units. In the second stage at pH > 8, tungstophosphoric completely decomposes to PO43–. In contrast, the decomposition of H3PW12O40 is reduced, or the stability of the [PW12O40]3– anion is enhanced, in ethanol–water or acetone solution at pH < 8. Key words: 12-tungstophosphate heteropolyacid, decomposition behaviour, potentiometric titration, 31P NMR, preparation high performance liquid chromatography.


2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S221
Author(s):  
Tomokadu Marutani ◽  
Takayoshi Kimura ◽  
Tadashi Kamiyama

Sign in / Sign up

Export Citation Format

Share Document