scholarly journals Facile Synthesis of Uniform Mesoporous Nb2O5 Micro-Flowers for Enhancing Photodegradation of Methyl Orange

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3783
Author(s):  
Jian-Qing Qiu ◽  
Huan-Qing Xie ◽  
Ya-Hao Wang ◽  
Lan Yu ◽  
Fang-Yuan Wang ◽  
...  

The removal of organic pollutants using green environmental photocatalytic degradation techniques urgently need high-performance catalysts. In this work, a facile one-step hydrothermal technique has been successfully applied to synthesize a Nb2O5 photocatalyst with uniform micro-flower structure for the degradation of methyl orange (MO) under UV irradiation. These nanocatalysts are characterized by transmission and scanning electron microscopies (TEM and SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) method, and UV-Vis diffuse reflectance spectroscopy (DRS). It is found that the prepared Nb2O5 micro-flowers presents a good crystal phases and consist of 3D hierarchical nanosheets with 400–500 nm in diameter. The surface area is as large as 48.6 m2 g−1. Importantly, the Nb2O5 micro-flowers exhibit superior catalytic activity up to 99.9% for the photodegradation of MO within 20 mins, which is about 60-fold and 4-fold larger than that of without catalysts (W/O) and commercial TiO2 (P25) sample, respectively. This excellent performance may be attributed to 3D porous structure with abundant catalytic active sites.

2019 ◽  
Vol 19 (11) ◽  
pp. 6924-6932 ◽  
Author(s):  
Qiaojie Yu ◽  
Tong Ouyang ◽  
Kefu Zhou ◽  
Changtang Chang

This study explored a facile one-step hydrothermal method of preparing a high-performance photocatalyst, namely, graphene-TiO2, for oxytetracycline (OTC) removal. The nanocomposites were characterized by Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and X-ray diffraction (XRD). The photocatalytic properties of different graphene loading types and various OTC initial concentrations, temperatures, and initial pH values were investigated. Results showed that the material with 10% graphene content exhibited the best performance and removal efficiency (beyond 99%) of OTC within 180 min at 35 °C and pH 5.5. The effects of different reactive oxygen species scavengers on photodegradation and the contributions were evaluated, and a possible reaction mechanism was proposed. Caenorhabditis elegans was used for toxicity testing during the entire degradation process and achieved a favorable result.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Zhen Wang ◽  
Lu Yin ◽  
Ziwen Chen ◽  
Guowang Zhou ◽  
Huixiang Shi

A novel magnetically recoverable AgBr@Ag3PO4/Fe3O4hybrid was prepared by a simple deposition-precipitation approach and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectroscopy (DRS). The results revealed that the photocatalytic activity and stability of AgBr@Ag3PO4/Fe3O4composite toward decomposition of methyl orange (MO) dye were superior to those of pure Ag3PO4under visible light irradiation. The photocatalytic activity enhancement of AgBr@Ag3PO4/Fe3O4is closely related to the efficient separation of electron-hole pairs derived from the matching band potentials between Ag3PO4and AgBr, as well as the good conductivity of Fe3O4. Moreover, the photocatalyst could be easily separated by applying an external magnetic field due to its magnetic property. The quenching effects of different scavengers proved that active h+and played the major role for the MO degradation. This work would provide new insight for the construction of visible light responsible photocatalysts with high performance, good stability, and recoverability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 202
Author(s):  
Yexin Dai ◽  
Jie Ding ◽  
Jingyu Li ◽  
Yang Li ◽  
Yanping Zong ◽  
...  

In this work, reduced graphene oxide (rGO) nanocomposites doped with nitrogen (N), sulfur (S) and transitional metal (Ni, Co, Fe) were synthesized by using a simple one-step in-situ hydrothermal approach. Electrochemical characterization showed that rGO-NS-Ni was the most prominent catalyst for glucose oxidation. The current density of the direct glucose alkaline fuel cell (DGAFC) with rGO-NS-Ni as the anode catalyst reached 148.0 mA/cm2, which was 40.82% higher than the blank group. The DGAFC exhibited a maximum power density of 48 W/m2, which was more than 2.08 folds than that of blank group. The catalyst was further characterized by SEM, XPS and Raman. It was speculated that the boosted performance was due to the synergistic effect of N, S-doped rGO and the metallic redox couples, (Ni2+/Ni3+, Co2+/Co3+ and Fe2+/Fe3+), which created more active sites and accelerated electron transfer. This research can provide insights for the development of environmental benign catalysts and promote the application of the DGAFCs.


Author(s):  
Wenrun Cui ◽  
Meijia Song ◽  
Guixing Jia ◽  
Yu Wang ◽  
Wanfeng Yang ◽  
...  

Abstract Tin (Sn)-based anodes have drawn extensive attention for magnesium ion batteries (MIBs) owing to their low reaction potentials, high theoretical capacities, and compatibility with conventional electrolytes. However, their poor electrochemical reactivity, sluggish kinetics, and large volume changes have obstructed progresses. Additionally, a clear understanding of the Mg storage chemistry is crucial for the development of high-performance MIBs. Here, we prepared self-supporting In-Sn alloy films with different compositions and phase constitutions via a one-step magnetron co-sputtering. As benchmarked with pure Sn film, the single-phase and biphase In-Sn alloy films effectively trigger the alloying reaction of Sn with Mg and further increasing of In significantly improves the electrochemical reactivity of the In-Sn electrodes. More importantly, operando X-ray diffraction was performed to unveil the magnesiation/demagnesiation mechanisms of the In0.2Sn0.8, In0.2Sn0.8/In3Sn and In3Sn electrodes, showing that In0.2Sn0.8 and In3Sn display different Mg storage mechanisms when existing alone or biphase coexisting. Our findings highlight the significance of the electrode design and mechanism investigations for MIBs.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051005 ◽  
Author(s):  
Godlaveeti Sreenivasa Kumar ◽  
Somala Adinarayana Reddy ◽  
Hussen Maseed ◽  
Nagireddy Ramamanohar Reddy

In this work, we present the synthesis of a ternary CeO2–SnO2/rGO nanocomposite by using a facile one-step hydrothermal method. The as-synthesized composite was structural, chemical, morphological, elemental information studied by using different characterization techniques X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDAX) and transmission electron microscope (TEM). The CeO2–SnO2/rGO exhibited an excellent specific capacitance of 156[Formula: see text]F[Formula: see text][Formula: see text] at 0.5[Formula: see text]A/g in the presence of 3 M KOH solution. The synergic effect of CeO2, SnO2 and graphene composite coated on Ni foam endowed a high specific capacitance than their individual compounds. This work suggests that the novel ternary composite is a promising candidate for the high performance electrochemical energy storage and conversion systems.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
Hamed Rashidi ◽  
Ali Ahmadpour ◽  
Fatemeh Bamoharram ◽  
Seyed Zebarjad ◽  
Majid Heravi ◽  
...  

AbstractZnO nanostructures were synthesised in a hydrothermal reaction of zinc acetate in the presence of molybdophosphoric acid (H3[PMo12O40]) as well as its vanadium-substituted acid (H4[PMo11VO40]) at various times, temperatures, and concentrations. The ZnO nanostructures were characterised by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results demonstrated that the synthesised products are crystalline with a zincite hexagonal phase. Various ZnO nanostructures, such as nanoparticles, microrods, and nanosheets, were produced by changing the experimental conditions. The photocatalytic degradation of methyl orange was also investigated using the ZnO nanoparticles thus prepared. These particles exhibited high performance in the photocatalytic degradation of MO and almost 100 % decolourisation occurred within only 20 min.


2019 ◽  
Vol 814 ◽  
pp. 487-492
Author(s):  
Xi Hao Lin ◽  
Pei Song Tang ◽  
Bei Bei Wang ◽  
Hai Qiang Tang

Using zinc acetate, glycerol alcohol and sodium hydroxide as principal raw materials, the ZnO microspheres were prepared by hydrothermal method at 200°C. The samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). Using methyl orange as the degradation object, the photocatalytic activities and recycling stability of ZnO were characterized. The results show that ZnO samples are spherical and the average diameter is approximately 3-4μm. Moreover, the bandgap width is 3.1eV. Under ultraviolet light irradiation, it is testified that ZnO shows a excellent photocatalytic activity for the degradation of methyl orange. From experience, we can draw a conclusion that the ZnO samples were in line with first-order kinetics, with an apparent rate constant of 0.016min-1. At the same time, ZnO showed excellent recycling performance. Although the samples have been recycled three times, it still maintained high photocatalytic activity.


2019 ◽  
Vol 14 (12) ◽  
pp. 1759-1765 ◽  
Author(s):  
N. Prakash ◽  
C. Narendhar ◽  
E. Muthusankar ◽  
D. Ragupathy

In this paper, KIT: Korea Advanced Institute of Science and Technology No. 6 (KIT-6) and MCM: Mobil Composition of Matter No. 48 (MCM-48) mesoporous silica templates were prepared by wrapping Pluronic (P123) and Cetyl trimethyl ammonium bromide (CTAB). Mesoporous Co3O4 geometry tailored KIT-6 and MCM-48 with different porosity were synthesized via reflux technique. Crystal geometry, morphology, molecular vibrations and pore structure were analyzed by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Brunauer-Emmett-Teller (BET) method based N2 adsorption–desorption for the modified materials. As expected, MCM-48 micropore-dominated electrode exhibited higher specific capacitance (442.5 F/g) which is much superior to that of KIT-6 (88.9 F/g). Outstanding electrochemical execution is due to the mesoporous tailored architecture (average pore diameter of 6.1 nm) and synergistic contribution of MCM-48 architectured with a Co3O4 core. This promising electrode material opens up a new platform for high-performance supercapacitors.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 161
Author(s):  
Fangtao Li ◽  
Xiaoxu Wang ◽  
Rongming Wang

As a typical two-dimensional (2D) MXene, Ti3C2O2 has been considered as a potential material for high-performance hydrogen evolution reaction (HER) catalyst, due to its anticorrosion and hydrophilic surface. However, it is still a challenge to improve the Ti3C2O2 surficial HER catalytic activity. In this work, we investigated the HER activity of Ti3C2O2 after the surface was doped with S, Se, and Te by the first principles method. The results indicated that the HER activity of Ti3C2O2 is improved after being doped with S, Se, Te because the Gibbs free energy of hydrogen adsorption (ΔGH) is increased from −2.19 eV to 0.08 eV. Furthermore, we also found that the ΔGH of Ti3C2O2 increased from 0.182 eV to 0.08 eV with the doping concentration varied from 5.5% to 16.7%. The HER catalytic activity improvement of Ti3C2O2 is attributed to the local crystal structure distortion in catalytic active sites and Fermi level shift leads to the p-d orbital hybridization. Our results pave a new avenue for preparing a low-cost and high performance HER catalyst.


2014 ◽  
Vol 496-500 ◽  
pp. 297-300 ◽  
Author(s):  
Bi Tao Liu ◽  
Liang Liang Tian ◽  
Ling Ling Peng

A series of composites of the high photoactivity of {001} facets exposed BiOCl and grapheme sheets (GS) were synthesized via a one-step hydrothermal reaction. The obtained BiOCl/GS photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. The as-prepared BiOCl/GS photocatalyst showed enhanced photocatalytic activity for the degradation of methyl orange (MO) under UV and visible light (λ > 400 nm). The enhanced photocatalytic activity could be attributed to oxygen vacancies of the {001} facets of BiOCl/GS and the high migration efficiency of photo-induced electrons, which could suppress the charge recombination effectively.


Sign in / Sign up

Export Citation Format

Share Document