Scalable ultrasonic casting of large-scale 2219AA Al alloys: Experiment and simulation

2021 ◽  
Vol 27 ◽  
pp. 102329
Author(s):  
Li Zhang ◽  
Xiaoqian Li ◽  
Zhilin Liu ◽  
Ruiqing Li ◽  
Ripeng Jiang ◽  
...  
Author(s):  
C. A. Braun ◽  
M. Schumaker ◽  
J. Rice ◽  
J. P. Borg

In this work, the static and dynamic compaction response of a six-material mixture, containing both brittle and ductile constituents, is compared. Quasi-static and dynamic compaction experiments were conducted on samples and the results compared to simulations. Optical analyses of compacted samples indicate that dynamically compacting samples to near 300 m/s is not sufficient for complete compaction or localized grain melt. Simulations indicate that a wide distribution of temperature and stress states are achieved in the dynamically compacted samples; compaction speeds should be increased to near 800 m/s at which point copper grains achieve melt temperatures on their surfaces. The experimental data is used to fit a bulk P-α equation of state (EOS) that can be used for simulating large-scale dynamic compaction for industrial applications.


2018 ◽  
Vol 43 ◽  
pp. 29-37 ◽  
Author(s):  
Yang Tian ◽  
Zhilin Liu ◽  
Xiaoqian Li ◽  
Lihua Zhang ◽  
Ruiqing Li ◽  
...  

Author(s):  
Shiqiang Zhang ◽  
Chunshu Li ◽  
Ruilin Liu ◽  
Jingyang Bao ◽  
Miao Chi

The in-cylinder gas flow is an important factor that affects the engine performance. The appropriate swirl can reduce cycle-to-cycle variations, increase flame propagation speed, and improve the combustion efficiency. Many technologies can induce significant swirl, but lead to intake flow loss. In this research work, the variable valve lift difference adjustment mechanism is developed to obtain and adjust in-cylinder swirl without weakening flow capacity in a four-valve gasoline engine. The in-cylinder swirl and tumble characteristics generated by the variable valve lift difference adjustment mechanism are studied by means of experiment and simulation. The results of the experiment and simulation show the intensity of tumble and swirl under the larger lift valve is increased with the increase in the phase difference between two intake cams at same camshaft angle, and a large-scale swirl is formed in the cylinder when the camshaft angles change from 40° to 80°, and another large scale swirl is formed during the camshaft angles change from 100° to 140°, but the rotating direction of the secondary swirl is inverse to that of first swirl. The scale and shape of the in-cylinder tumble and swirl are not changed significantly with the increase in the phase difference between two intake cams when the camshaft angles change from 80° to 100°. A brief discussion on the research results that improve the performance of actual gasoline engine is given.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
K. Kuroda ◽  
Y. Tomokiyo ◽  
T. Kumano ◽  
T. Eguchi

The contrast in electron microscopic images of planar faults in a crystal is characterized by a phase factor , where is the reciprocal lattice vector of the operating reflection, and the lattice displacement due to the fault under consideration. Within the two-beam theory a planar fault with an integer value of is invisible, but a detectable contrast is expected when the many-beam dynamical effect is not negligibly small. A weak fringe contrast is also expected when differs slightly from an integer owing to an additional small displacement of the lattice across the fault. These faint contrasts are termed as many-beam contrasts in the former case, and as ε fringe contrasts in the latter. In the present work stacking faults in Cu-Al alloys and antiphase boundaries (APB) in CuZn, FeCo and Fe-Al alloys were observed under such conditions as mentioned above, and the results were compared with the image profiles of the faults calculated in the systematic ten-beam approximation.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Sign in / Sign up

Export Citation Format

Share Document