scholarly journals Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging

2021 ◽  
pp. 100594
Author(s):  
Ruiyi Li ◽  
Xiao Yang ◽  
Jian Li ◽  
Yanan Shen ◽  
Lixin Zhang ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 426 ◽  
Author(s):  
Yunjian Wu ◽  
Xiaoxing Zhang ◽  
Ankit Negi ◽  
Jixiong He ◽  
Guoxiong Hu ◽  
...  

Polymer composites, with both high thermal conductivity and high electrical insulation strength, are desirable for power equipment and electronic devices, to sustain increasingly high power density and heat flux. However, conventional methods to synthesize polymer composites with high thermal conductivity often degrade their insulation strength, or cause a significant increase in dielectric properties. In this work, we demonstrate epoxy nanocomposites embedded with silver nanoparticles (AgNPs), and modified boron nitride nanosheets (BNNSs), which have high thermal conductivity, high insulation strength, low permittivity, and low dielectric loss. Compared with neat epoxy, the composite with 25 vol% of binary nanofillers has a significant enhancement (~10x) in thermal conductivity, which is twice of that filled with BNNSs only (~5x), owing to the continuous heat transfer path among BNNSs enabled by AgNPs. An increase in the breakdown voltage is observed, which is attributed to BNNSs-restricted formation of AgNPs conducting channels that result in a lengthening of the breakdown path. Moreover, the effects of nanofillers on dielectric properties, and thermal simulated current of nanocomposites, are discussed.


2018 ◽  
Vol 6 (2) ◽  
pp. 257-265 ◽  
Author(s):  
Shaoqing Liu ◽  
Bo Zhao ◽  
Li Jiang ◽  
Yan-Wu Zhu ◽  
Xian-Zhu Fu ◽  
...  

3D core–shell Cu@rGO filled polymer composites with high thermal conductivity for advanced electronic packaging techniques.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1536 ◽  
Author(s):  
Junlong Yao ◽  
Li Hu ◽  
Min Zhou ◽  
Feng You ◽  
Xueliang Jiang ◽  
...  

Multifunctional polymer composites with both high dielectric constants and high thermal conductivity are urgently needed by high-temperature electronic devices and modern microelectromechanical systems. However, high heat-conduction capability or dielectric properties of polymer composites all depend on high-content loading of different functional thermal-conductive or high-dielectric ceramic fillers (every filler volume fraction ≥ 50%, i.e., ffiller ≥ 50%), and an overload of various fillers (fthermal-conductive filler + fhigh-dielectric filler > 50%) will decrease the processability and mechanical properties of the composite. Herein, series of alumina/barium titanate/polypropylene (Al2O3/BT/PP) composites with high dielectric- and high thermal-conductivity properties are prepared with no more than 50% volume fraction of total ceramic fillers loading, i.e., ffillers ≤ 50%. Results showed the thermal conductivity of the Al2O3/BT/PP composite is up to 0.90 W/m·K with only 10% thermal-conductive Al2O3 filler, which is 4.5 times higher than the corresponding Al2O3/PP composites. Moreover, higher dielectric strength (Eb) is also found at the same loading, which is 1.6 times higher than PP, and the Al2O3/BT/PP composite also exhibited high dielectric constant ( ε r = 18 at 1000 Hz) and low dielectric loss (tan δ ≤ 0.030). These excellent performances originate from the synergistic mechanism between BaTiO3 macroparticles and Al2O3 nanoparticles.


2016 ◽  
Vol 27 (17) ◽  
pp. 175601 ◽  
Author(s):  
Indira Seshadri ◽  
Gibran L Esquenazi ◽  
Thomas Cardinal ◽  
Theodorian Borca-Tasciuc ◽  
Ganpati Ramanath

1990 ◽  
Vol 203 ◽  
Author(s):  
Ellice Y. Luh ◽  
Leonard E. Dolhert ◽  
Jack H. Enloe ◽  
John W. Lau

ABSTRACTCharacteristics such as CTE close to that of silicon, high thermal conductivity, and good dielectric properties make aluminum nitride (AIN) an excellent dielectric for packaging silicon-based high density multichip interconnects. However, there remains many aspects of its behavior that have not been characterized. One such example is the behavior of the various metallizations used within a package. As with A12O3, these metallizations must contribute toward a hermetic seal separating the die from the environment. However, the chemical behavior of the metallization systems used for A12O3 may not be compatible with non-oxide ceramics such as AIN. Consequently, these chemical interactions are investigated in view of the requirements for each application within electronic packages. Hermeticity testing results are also included in the discussion.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


Sign in / Sign up

Export Citation Format

Share Document