scholarly journals In vivo evolution of lactic acid hyper-tolerant Clostridium thermocellum

2021 ◽  
Author(s):  
Roberto Mazzoli ◽  
Daniel G. Olson ◽  
Angela Maria Concu ◽  
Evert K. Holwerda ◽  
Lee R. Lynd
Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


1983 ◽  
Vol 62 (6) ◽  
pp. 713-714 ◽  
Author(s):  
Y. Kuboki ◽  
C.-F. Liu ◽  
T. Fusayama

The caries detector, 1.0% acid red sotution in proyylene glycol, failed to stain EDTA-demineralized bavine dentin matrix, but stained the same matrix when treated by lactic acid in a concentration above 0.01 M. Thus, acid of bacterial origin could possibly be responsible for the stainability change of carlous dentin in vivo.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Hai Wang ◽  
Xiao Chang ◽  
Guixing Qiu ◽  
Fuzhai Cui ◽  
Xisheng Weng ◽  
...  

It still remains a major challenge to repair large bone defects in the orthopaedic surgery. In previous studies, a nanohydroxyapatite/collagen/poly(L-lactic acid) (nHAC/PLA) composite, similar to natural bone in both composition and structure, has been prepared. It could repair small sized bone defects, but they were restricted to repair a large defect due to the lack of oxygen and nutrition supply for cell survival without vascularization. The aim of the present study was to investigate whether nHAC/PLA composites could be vascularized in vivo. Composites were implanted intramuscularly in the groins of rabbits for 2, 6, or 10 weeks (n=5×3). After removing, the macroscopic results showed that there were lots of rich blood supply tissues embracing the composites, and the volumes of tissue were increasing as time goes on. In microscopic views, blood vessels and vascular sprouts could be observed, and microvessel density (MVD) of the composites trended to increase over time. It suggested that nHAC/PLA composites could be well vascularized by implanting in vivo. In the future, it would be possible to generate vascular pedicle bone substitutes with nHAC/PLA composites for grafting.


1998 ◽  
Vol 24 (9) ◽  
pp. 819-825 ◽  
Author(s):  
Daishiro Kobayashi ◽  
Satoru Tsubuku ◽  
Hidetoshi Yamanaka ◽  
Masaharu Asano ◽  
Masaharu Miyajima ◽  
...  

2016 ◽  
Vol 62 (6) ◽  
pp. 514-524 ◽  
Author(s):  
Sandra Rayén Quilodrán-Vega ◽  
Julio Villena ◽  
José Valdebenito ◽  
María José Salas ◽  
Cristian Parra ◽  
...  

Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.


2021 ◽  
Vol 62 (5) ◽  
pp. 148-156
Author(s):  
Kenji Oonaka ◽  
Naoki Kobayashi ◽  
Yosuke Uchiyama ◽  
Mioko Honda ◽  
Shiro Miyake ◽  
...  

2008 ◽  
Vol 74 (7) ◽  
pp. 1997-2003 ◽  
Author(s):  
Mathieu Millette ◽  
Gilbert Cornut ◽  
Claude Dupont ◽  
François Shareck ◽  
Denis Archambault ◽  
...  

ABSTRACT This study demonstrated the capacity of bacteriocin-producing lactic acid bacteria (LAB) to reduce intestinal colonization by vancomycin-resistant enterococci (VRE) in a mouse model. Lactococcus lactis MM19 and Pediococcus acidilactici MM33 are bacteriocin producers isolated from human feces. The bacteriocin secreted by P. acidilactici is identical to pediocin PA-1/AcH, while PCR analysis demonstrated that L. lactis harbors the nisin Z gene. LAB were acid and bile tolerant when assayed under simulated gastrointestinal conditions. A well diffusion assay using supernatants from LAB demonstrated strong activity against a clinical isolate of VRE. A first in vivo study was done using C57BL/6 mice that received daily intragastric doses of L. lactis MM19, P. acidilactici MM33, P. acidilactici MM33A (a pediocin mutant that had lost its ability to produce pediocin), or phosphate-buffered saline (PBS) for 18 days. This study showed that L. lactis and P. acidilactici MM33A increased the concentrations of total LAB and anaerobes while P. acidilactici MM33 decreased the Enterobacteriaceae populations. A second in vivo study was done using VRE-colonized mice that received the same inocula as those in the previous study for 16 days. In L. lactis-fed mice, fecal VRE levels 1.73 and 2.50 log10 CFU/g lower than those in the PBS group were observed at 1 and 3 days postinfection. In the P. acidilactici MM33-fed mice, no reduction was observed at 1 day postinfection but a reduction of 1.85 log10 CFU/g was measured at 3 days postinfection. Levels of VRE in both groups of mice treated with bacteriocin-producing LAB were undetectable at 6 days postinfection. No significant difference in mice fed the pediocin-negative strain compared to the control group was observed. This is the first demonstration that human L. lactis and P. acidilactici nisin- and pediocin-producing strains can reduce VRE intestinal colonization.


2014 ◽  
Vol 41 (2) ◽  
pp. 570-580 ◽  
Author(s):  
Estefanía Muñoz-Atienza ◽  
Carlos Araújo ◽  
Susana Magadán ◽  
Pablo E. Hernández ◽  
Carmen Herranz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document