Incorporating network structure with node contents for community detection on large networks using deep learning

2018 ◽  
Vol 297 ◽  
pp. 71-81 ◽  
Author(s):  
Jinxin Cao ◽  
Di Jin ◽  
Liang Yang ◽  
Jianwu Dang
2018 ◽  
Author(s):  
Marinka Zitnik ◽  
Rok Sosič ◽  
Jure Leskovec

Uncovering modular structure in networks is fundamental for systems in biology, physics, and engineering. Community detection identifies candidate modules as hypotheses, which then need to be validated through experiments, such as mutagenesis in a biological laboratory. Only a few communities can typically be validated, and it is thus important to prioritize which communities to select for downstream experimentation. Here we develop CRANK, a mathematically principled approach for prioritizing network communities. CRANK efficiently evaluates robustness and magnitude of structural features of each community and then combines these features into the community prioritization. CRANK can be used with any community detection method. It needs only information provided by the network structure and does not require any additional metadata or labels. However, when available, CRANK can incorporate domain-specific information to further boost performance. Experiments on many large networks show that CRANK effectively prioritizes communities, yielding a nearly 50-fold improvement in community prioritization.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 944 ◽  
Author(s):  
Xia Geng ◽  
Hu Lu ◽  
Jun Sun

In this paper, we proposed a novel community detection method based on the network structure transformation, that utilized deep learning. The probability transfer matrix of the network adjacency matrix was calculated, and the probability transfer matrix was used as the input of the deep learning network. We use a denoising autoencoder to nonlinearly map the probability transfer matrix into a new sub space. The community detection was calculated with the deep learning nonlinear transform of the network structure. The network nodes were clustered in the new space with the K-means clustering algorithm. The division of the community structure was obtained. We conducted extensive experimental tests on the benchmark networks and the standard networks (known as the initial division of communities). We tested the clustering results of the different types, and compared with the three base algorithms. The results showed that the proposed community detection model was effective. We compared the results with other traditional community detection methods. The empirical results on datasets of varying sizes demonstrated that our proposed method outperformed the other community detection methods for this task.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2021 ◽  
Vol 11 (10) ◽  
pp. 4497
Author(s):  
Dongming Chen ◽  
Mingshuo Nie ◽  
Jie Wang ◽  
Yun Kong ◽  
Dongqi Wang ◽  
...  

Aiming at analyzing the temporal structures in evolutionary networks, we propose a community detection algorithm based on graph representation learning. The proposed algorithm employs a Laplacian matrix to obtain the node relationship information of the directly connected edges of the network structure at the previous time slice, the deep sparse autoencoder learns to represent the network structure under the current time slice, and the K-means clustering algorithm is used to partition the low-dimensional feature matrix of the network structure under the current time slice into communities. Experiments on three real datasets show that the proposed algorithm outperformed the baselines regarding effectiveness and feasibility.


Author(s):  
Shaoqiang Wang ◽  
Shudong Wang ◽  
Song Zhang ◽  
Yifan Wang

Abstract To automatically detect dynamic EEG signals to reduce the time cost of epilepsy diagnosis. In the signal recognition of electroencephalogram (EEG) of epilepsy, traditional machine learning and statistical methods require manual feature labeling engineering in order to show excellent results on a single data set. And the artificially selected features may carry a bias, and cannot guarantee the validity and expansibility in real-world data. In practical applications, deep learning methods can release people from feature engineering to a certain extent. As long as the focus is on the expansion of data quality and quantity, the algorithm model can learn automatically to get better improvements. In addition, the deep learning method can also extract many features that are difficult for humans to perceive, thereby making the algorithm more robust. Based on the design idea of ResNeXt deep neural network, this paper designs a Time-ResNeXt network structure suitable for time series EEG epilepsy detection to identify EEG signals. The accuracy rate of Time-ResNeXt in the detection of EEG epilepsy can reach 91.50%. The Time-ResNeXt network structure produces extremely advanced performance on the benchmark dataset (Berne-Barcelona dataset) and has great potential for improving clinical practice.


2021 ◽  
Author(s):  
Daizong Ding ◽  
Mi Zhang ◽  
Hanrui Wang ◽  
Xudong Pan ◽  
Min Yang ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2107
Author(s):  
Xin Wei ◽  
Huan Wan ◽  
Fanghua Ye ◽  
Weidong Min

In recent years, medical image segmentation (MIS) has made a huge breakthrough due to the success of deep learning. However, the existing MIS algorithms still suffer from two types of uncertainties: (1) the uncertainty of the plausible segmentation hypotheses and (2) the uncertainty of segmentation performance. These two types of uncertainties affect the effectiveness of the MIS algorithm and then affect the reliability of medical diagnosis. Many studies have been done on the former but ignore the latter. Therefore, we proposed the hierarchical predictable segmentation network (HPS-Net), which consists of a new network structure, a new loss function, and a cooperative training mode. According to our knowledge, HPS-Net is the first network in the MIS area that can generate both the diverse segmentation hypotheses to avoid the uncertainty of the plausible segmentation hypotheses and the measure predictions about these hypotheses to avoid the uncertainty of segmentation performance. Extensive experiments were conducted on the LIDC-IDRI dataset and the ISIC2018 dataset. The results show that HPS-Net has the highest Dice score compared with the benchmark methods, which means it has the best segmentation performance. The results also confirmed that the proposed HPS-Net can effectively predict TNR and TPR.


Sign in / Sign up

Export Citation Format

Share Document