scholarly journals Skin disease diagnosis with deep learning: A review

2021 ◽  
Vol 464 ◽  
pp. 364-393
Author(s):  
Hongfeng Li ◽  
Yini Pan ◽  
Jie Zhao ◽  
Li Zhang
2021 ◽  
Author(s):  
K. A. Muhaba ◽  
K. Dese ◽  
T. M. Aga ◽  
F. T. Zewdu ◽  
G. L. Simegn

2021 ◽  
Author(s):  
Kedir Ali Muhaba ◽  
Kokeb Dese ◽  
Tadele Mola Aga ◽  
Feleke Tilahun Zewdu ◽  
Gizeaddis Lamesgin Simegn

Abstract Background Skin diseases are the fourth most common cause of human illness which results enormous non-fatal burden in daily life activities. They are caused by chemical, physical and biological factors. Visual assessment in combination with clinical information is the common diagnosis procedure for the diseases. However, these procedures are manual, time consuming, and require experience and excellent visual perception. Methods In this study, an automated system is proposed for diagnosis of five common skin diseases by using data from clinical images and patient information using deep learning pretrained mobilenet-v2 model. Clinical images were acquired using different smartphone cameras and patient’s information were collected during patient registration. Different data preprocessing and augmentation techniques were applied to boost the performance of the model prior to training. Results A multiclass classification accuracy of 97.5%, sensitivity of 97.7% and precision of 97.7% has been achieved using the proposed technique for the common five skin disease. The results demonstrate that, the developed system provides excellent diagnosis performance for the five skin diseases. Conclusion The system has been designed as a smartphone application and it has a potential to be used as a decision support system in low resource settings, where both the expert dermatologist and the means is limited.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Bin Zhang ◽  
Xue Zhou ◽  
Yichen Luo ◽  
Hao Zhang ◽  
Huayong Yang ◽  
...  

AbstractDeep learning has become an extremely popular method in recent years, and can be a powerful tool in complex, prior-knowledge-required areas, especially in the field of biomedicine, which is now facing the problem of inadequate medical resources. The application of deep learning in disease diagnosis has become a new research topic in dermatology. This paper aims to provide a quick review of the classification of skin disease using deep learning to summarize the characteristics of skin lesions and the status of image technology. We study the characteristics of skin disease and review the research on skin disease classification using deep learning. We analyze these studies using datasets, data processing, classification models, and evaluation criteria. We summarize the development of this field, illustrate the key steps and influencing factors of dermatological diagnosis, and identify the challenges and opportunities at this stage. Our research confirms that a skin disease recognition method based on deep learning can be superior to professional dermatologists in specific scenarios and has broad research prospects.


2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098284
Author(s):  
Tingting Qiao ◽  
Simin Liu ◽  
Zhijun Cui ◽  
Xiaqing Yu ◽  
Haidong Cai ◽  
...  

Objective To construct deep learning (DL) models to improve the accuracy and efficiency of thyroid disease diagnosis by thyroid scintigraphy. Methods We constructed DL models with AlexNet, VGGNet, and ResNet. The models were trained separately with transfer learning. We measured each model’s performance with six indicators: recall, precision, negative predictive value (NPV), specificity, accuracy, and F1-score. We also compared the diagnostic performances of first- and third-year nuclear medicine (NM) residents with assistance from the best-performing DL-based model. The Kappa coefficient and average classification time of each model were compared with those of two NM residents. Results The recall, precision, NPV, specificity, accuracy, and F1-score of the three models ranged from 73.33% to 97.00%. The Kappa coefficient of all three models was >0.710. All models performed better than the first-year NM resident but not as well as the third-year NM resident in terms of diagnostic ability. However, the ResNet model provided “diagnostic assistance” to the NM residents. The models provided results at speeds 400 to 600 times faster than the NM residents. Conclusion DL-based models perform well in diagnostic assessment by thyroid scintigraphy. These models may serve as tools for NM residents in the diagnosis of Graves’ disease and subacute thyroiditis.


Author(s):  
Waleej Haider ◽  
Aqeel Ur Rehman ◽  
Ahmed Maqsood ◽  
Syed Zurain Javed

Author(s):  
Jinyuan Dang ◽  
Hu Li ◽  
Kai Niu ◽  
Zhiyuan Xu ◽  
Jianhao Lin ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2021 ◽  
Vol 11 (2) ◽  
pp. 760
Author(s):  
Yun-ji Kim ◽  
Hyun Chin Cho ◽  
Hyun-chong Cho

Gastric cancer has a high mortality rate worldwide, but it can be prevented with early detection through regular gastroscopy. Herein, we propose a deep learning-based computer-aided diagnosis (CADx) system applying data augmentation to help doctors classify gastroscopy images as normal or abnormal. To improve the performance of deep learning, a large amount of training data are required. However, the collection of medical data, owing to their nature, is highly expensive and time consuming. Therefore, data were generated through deep convolutional generative adversarial networks (DCGAN), and 25 augmentation policies optimized for the CIFAR-10 dataset were implemented through AutoAugment to augment the data. Accordingly, a gastroscopy image was augmented, only high-quality images were selected through an image quality-measurement method, and gastroscopy images were classified as normal or abnormal through the Xception network. We compared the performances of the original training dataset, which did not improve, the dataset generated through the DCGAN, the dataset augmented through the augmentation policies of CIFAR-10, and the dataset combining the two methods. The dataset combining the two methods delivered the best performance in terms of accuracy (0.851) and achieved an improvement of 0.06 over the original training dataset. We confirmed that augmenting data through the DCGAN and CIFAR-10 augmentation policies is most suitable for the classification model for normal and abnormal gastric endoscopy images. The proposed method not only solves the medical-data problem but also improves the accuracy of gastric disease diagnosis.


Sign in / Sign up

Export Citation Format

Share Document