Kashin-Beck Disease Diagnosis Based on Deep Learning from Hand X-ray Images

Author(s):  
Jinyuan Dang ◽  
Hu Li ◽  
Kai Niu ◽  
Zhiyuan Xu ◽  
Jianhao Lin ◽  
...  
Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 669
Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Talha Anwar ◽  
Hind S. Alsaif ◽  
Sara Mhd. Bachar Chrouf ◽  
...  

The coronavirus pandemic (COVID-19) is disrupting the entire world; its rapid global spread threatens to affect millions of people. Accurate and timely diagnosis of COVID-19 is essential to control the spread and alleviate risk. Due to the promising results achieved by integrating machine learning (ML), particularly deep learning (DL), in automating the multiple disease diagnosis process. In the current study, a model based on deep learning was proposed for the automated diagnosis of COVID-19 using chest X-ray images (CXR) and clinical data of the patient. The aim of this study is to investigate the effects of integrating clinical patient data with the CXR for automated COVID-19 diagnosis. The proposed model used data collected from King Fahad University Hospital, Dammam, KSA, which consists of 270 patient records. The experiments were carried out first with clinical data, second with the CXR, and finally with clinical data and CXR. The fusion technique was used to combine the clinical features and features extracted from images. The study found that integrating clinical data with the CXR improves diagnostic accuracy. Using the clinical data and the CXR, the model achieved an accuracy of 0.970, a recall of 0.986, a precision of 0.978, and an F-score of 0.982. Further validation was performed by comparing the performance of the proposed system with the diagnosis of an expert. Additionally, the results have shown that the proposed system can be used as a tool that can help the doctors in COVID-19 diagnosis.


Author(s):  
Mohammed Y. Kamil

COVID-19 disease has rapidly spread all over the world at the beginning of this year. The hospitals' reports have told that low sensitivity of RT-PCR tests in the infection early stage. At which point, a rapid and accurate diagnostic technique, is needed to detect the Covid-19. CT has been demonstrated to be a successful tool in the diagnosis of disease. A deep learning framework can be developed to aid in evaluating CT exams to provide diagnosis, thus saving time for disease control. In this work, a deep learning model was modified to Covid-19 detection via features extraction from chest X-ray and CT images. Initially, many transfer-learning models have applied and comparison it, then a VGG-19 model was tuned to get the best results that can be adopted in the disease diagnosis. Diagnostic performance was assessed for all models used via the dataset that included 1000 images. The VGG-19 model achieved the highest accuracy of 99%, sensitivity of 97.4%, and specificity of 99.4%. The deep learning and image processing demonstrated high performance in early Covid-19 detection. It shows to be an auxiliary detection way for clinical doctors and thus contribute to the control of the pandemic.


Author(s):  
Seifeddine Messaoud ◽  
Soulef Bouaafia ◽  
Amna Maraoui ◽  
Lazhar Khriji ◽  
Ahmed Chiheb Ammari ◽  
...  

At the end of 2019, the infectious coronavirus disease (COVID-19) was reported for the first time in Wuhan, and, since then, it has become a public health issue in China and even worldwide. This pandemic has devastating effects on societies and economies around the world, and poor countries and continents are likely to face particularly serious and long-lasting damage, which could lead to large epidemic outbreaks because of the lack of financial and health resources. The increasing number of COVID-19 tests gives more information about the epidemic spread, and this can help contain the spread to avoid more infection. As COVID-19 keeps spreading, medical products, especially those needed to perform blood tests, will become scarce as a result of the high demand and insufficient supply and logistical means. However, technological tests based on deep learning techniques and medical images could be useful in fighting this pandemic. In this perspective, we propose a COVID-19 disease diagnosis (CDD) tool that implements a deep learning technique to provide automatic symptoms checking and COVID-19 detection. Our CDD scheme implements two main steps. First, the patient’s symptoms are checked, and the infection probability is predicted. Then, based on the infection probability, the patient’s lungs will be diagnosed by an automatic analysis of X-ray or computerized tomography (CT) images, and the presence of the infection will be accordingly confirmed or not. The numerical results prove the efficiency of the proposed scheme by achieving an accuracy value over 90% compared with the other schemes.


2021 ◽  
Author(s):  
Soumava Dey ◽  
Gunther Correia Bacellar ◽  
Mallikarjuna Basappa Chandrappa ◽  
Raj Kulkarni

The rise of the coronavirus disease 2019 (COVID-19) pandemic has made it necessary to improve existing medical screening and clinical management of this disease. While COVID-19 patients are known to exhibit a variety of symptoms, the major symptoms include fever, cough, and fatigue. Since these symptoms also appear in pneumonia patients, this creates complications in COVID-19 detection especially during the flu season. Early studies identified abnormalities in chest X-ray images of COVID-19 infected patients that could be beneficial for disease diagnosis. Therefore, chest X-ray image-based disease classification has emerged as an alternative to aid medical diagnosis. However, manual detection of COVID-19 from a set of chest X-ray images comprising both COVID-19 and pneumonia cases is cumbersome and prone to human error. Thus, artificial intelligence techniques powered by deep learning algorithms, which learn from radiography images and predict presence of COVID-19 have potential to enhance current diagnosis process. Towards this purpose, here we implemented a set of deep learning pre-trained models such as ResNet, VGG, Inception and EfficientNet in conjunction with developing a computer vision AI system based on our own convolutional neural network (CNN) model: Deep Learning in Healthcare (DLH)-COVID. All these CNN models cater to image classification exercise. We used publicly available resources of 6,432 images and further strengthened our model by tuning hyperparameters to provide better generalization during the model validation phase. Our final DLH-COVID model yielded the highest accuracy of 96% in detection of COVID-19 from chest X-ray images when compared to images of both pneumonia-affected and healthy individuals. Given the practicality of acquiring chest X-ray images by patients, we also developed a web application (link: https://toad.li/xray) based on our model to directly enable users to upload chest X-ray images and detect the presence of COVID-19 within a few seconds. Taken together, here we introduce a state-of-the-art artificial intelligence-based system for efficient COVID-19 detection and a user-friendly application that has the capacity to become a rapid COVID-19 diagnosis method in the near future.


2020 ◽  
Vol 9 (3) ◽  
pp. 871 ◽  
Author(s):  
Muhammad Arsalan ◽  
Muhammad Owais ◽  
Tahir Mahmood ◽  
Jiho Choi ◽  
Kang Ryoung Park

Automatic chest anatomy segmentation plays a key role in computer-aided disease diagnosis, such as for cardiomegaly, pleural effusion, emphysema, and pneumothorax. Among these diseases, cardiomegaly is considered a perilous disease, involving a high risk of sudden cardiac death. It can be diagnosed early by an expert medical practitioner using a chest X-Ray (CXR) analysis. The cardiothoracic ratio (CTR) and transverse cardiac diameter (TCD) are the clinical criteria used to estimate the heart size for diagnosing cardiomegaly. Manual estimation of CTR and other diseases is a time-consuming process and requires significant work by the medical expert. Cardiomegaly and related diseases can be automatically estimated by accurate anatomical semantic segmentation of CXRs using artificial intelligence. Automatic segmentation of the lungs and heart from the CXRs is considered an intensive task owing to inferior quality images and intensity variations using nonideal imaging conditions. Although there are a few deep learning-based techniques for chest anatomy segmentation, most of them only consider single class lung segmentation with deep complex architectures that require a lot of trainable parameters. To address these issues, this study presents two multiclass residual mesh-based CXR segmentation networks, X-RayNet-1 and X-RayNet-2, which are specifically designed to provide fine segmentation performance with a few trainable parameters compared to conventional deep learning schemes. The proposed methods utilize semantic segmentation to support the diagnostic procedure of related diseases. To evaluate X-RayNet-1 and X-RayNet-2, experiments were performed with a publicly available Japanese Society of Radiological Technology (JSRT) dataset for multiclass segmentation of the lungs, heart, and clavicle bones; two other publicly available datasets, Montgomery County (MC) and Shenzhen X-Ray sets (SC), were evaluated for lung segmentation. The experimental results showed that X-RayNet-1 achieved fine performance for all datasets and X-RayNet-2 achieved competitive performance with a 75% parameter reduction.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhanchao Xian ◽  
Xiaoqing Wang ◽  
Shaodi Yan ◽  
Dahao Yang ◽  
Junyu Chen ◽  
...  

The automatic segmentation of main vessels on X-ray angiography (XRA) images is of great importance in the smart coronary artery disease diagnosis system. However, existing methods have been developed to this task, but these methods have difficulty in recognizing the coronary artery structure in XRA images. Main vessel segmentation is still a challenging task due to the diversity and small-size region of the vessel in the XRA images. In this study, we propose a robust method for main vessel segmentation by using deep learning architectures with fully convolutional networks. Four deep learning models based on the UNet architecture are evaluated on a clinical dataset, which consists of 3200 X-ray angiography images collected from 1118 patients. Using the precision (Pre), recall (Re), and F1 score (F1) as evaluation metrics, the average Pre, Re, and F1 for main vessel segmentation in the entire experimental dataset is 0.901, 0.898, and 0.900, respectively. 89.8% of the images exhibited a high F1 score >0.8. For the main vessel segmentation in XRA images, our deep learning methods demonstrated that vessels could be segmented in real time with a more optimized implementation, to further facilitate the online diagnosis in smart medical.


2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


Nanoscale ◽  
2021 ◽  
Author(s):  
Alexander Skorikov ◽  
Wouter Heyvaert ◽  
Wiebke Albrecht ◽  
Daan Pelt ◽  
Sara Bals

The combination of energy-dispersive X-ray spectroscopy (EDX) and electron tomography is a powerful approach to retrieve the 3D elemental distribution in nanomaterials, providing an unprecedented level of information for complex,...


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4595
Author(s):  
Parisa Asadi ◽  
Lauren E. Beckingham

X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating the internal features of porous rock. Reliable phase segmentation in these images is highly necessary but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective. Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider several extracted features in addition to color attenuation, is a promising and powerful method for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images enables faster data collection and interpretation than traditional methods. This study investigates the performance of several filtering techniques with three machine learning methods and a deep learning method to assess the potential for reliable feature extraction and pixel-level phase segmentation of X-ray CT images. Features were first extracted from images using well-known filters and from the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering, Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified U-Net model, were applied to the extracted input features. The models’ performances were then compared and contrasted to determine the influence of the machine learning method and input features on reliable phase segmentation. The results showed considering more dimensionality has promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94. Feature-based Random Forest demonstrated the best performance among the machine learning models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos and Marcellus, respectively. In general, considering more features provided promising and reliable segmentation results that are valuable for analyzing the composition of dense samples, such as shales, which are significant unconventional reservoirs in oil recovery.


Sign in / Sign up

Export Citation Format

Share Document