Microglia derived from the axotomized adult rat facial nucleus uptake glutamate and metabolize it to glutamine in vitro

2017 ◽  
Vol 102 ◽  
pp. 1-12 ◽  
Author(s):  
Kazuyuki Nakajima ◽  
Tomoyuki Kanamatsu ◽  
Maasa Koshimoto ◽  
Shinichi Kohsaka
Keyword(s):  
Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


2021 ◽  
Vol 22 (6) ◽  
pp. 2971
Author(s):  
Shizuka Takaku ◽  
Masami Tsukamoto ◽  
Naoko Niimi ◽  
Hideji Yako ◽  
Kazunori Sango

Besides its insulinotropic actions on pancreatic β cells, neuroprotective activities of glucagon-like peptide-1 (GLP-1) have attracted attention. The efficacy of a GLP-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) for functional repair after sciatic nerve injury and amelioration of diabetic peripheral neuropathy (DPN) has been reported; however, the underlying mechanisms remain unclear. In this study, the bioactivities of Ex-4 on immortalized adult rat Schwann cells IFRS1 and adult rat dorsal root ganglion (DRG) neuron–IFRS1 co-culture system were investigated. Localization of GLP-1R in both DRG neurons and IFRS1 cells were confirmed using knockout-validated monoclonal Mab7F38 antibody. Treatment with 100 nM Ex-4 significantly enhanced survival/proliferation and migration of IFRS1 cells, as well as stimulated the movement of IFRS1 cells toward neurites emerging from DRG neuron cell bodies in the co-culture with the upregulation of myelin protein 22 and myelin protein zero. Because Ex-4 induced phosphorylation of serine/threonine-specific protein kinase AKT in these cells and its effects on DRG neurons and IFRS1 cells were attenuated by phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, Ex-4 might act on both cells to activate PI3K/AKT signaling pathway, thereby promoting myelination in the co-culture. These findings imply the potential efficacy of Ex-4 toward DPN and other peripheral nerve lesions.


1985 ◽  
Vol 40 (4) ◽  
pp. 297-302 ◽  
Author(s):  
David R. Mann ◽  
Diane Evans ◽  
Festus Edoimioya ◽  
Freja Kamel ◽  
George M. Butterstein

Neuroscience ◽  
2011 ◽  
Vol 192 ◽  
pp. 11-19 ◽  
Author(s):  
C.J. Behrens ◽  
R. ul Haq ◽  
A. Liotta ◽  
M.L. Anderson ◽  
U. Heinemann

1997 ◽  
Vol 20 (1-2) ◽  
pp. 21-29 ◽  
Author(s):  
Bettaiya Rajanna ◽  
Sharada Rajanna ◽  
Elizabeth Hall ◽  
Prabhakara R. Yallapragada

1993 ◽  
Vol 264 (2) ◽  
pp. H639-H652 ◽  
Author(s):  
M. Nishida ◽  
W. W. Carley ◽  
M. E. Gerritsen ◽  
O. Ellingsen ◽  
R. A. Kelly ◽  
...  

Although reciprocal intercellular signaling may occur between endocardial or microvascular endothelium and cardiac myocytes, suitable in vitro models have not been well characterized. In this report, we describe the isolation and primary culture of cardiac microvascular endothelial cells (CMEC) from both adult rat and human ventricular tissue. Differential uptake of fluorescently labeled acetylated low-density lipoprotein (Ac-LDL) indicated that primary isolates of rat CMEC were quite homogeneous, unlike primary isolates of human ventricular tissue, which required cell sorting based on Ac-LDL uptake to create endothelial cell-enriched primary cultures. The endothelial phenotype of both primary isolates and postsort subcultured CMEC and their microvascular origin were determined by characteristic histochemical staining for a number of endothelial cell-specific markers, by the absence of cells with fibroblast or pericyte-specific cell surface antigens, and by rapid tube formation on purified basement membrane preparations. Importantly, [3H]-thymidine uptake was increased 2.3-fold in subconfluent rat microvascular endothelial cells 3 days after coculture with adult rat ventricular myocytes because of release of an endothelial cell mitogen(s) into the extracellular matrix, resulting in a 68% increase in cell number compared with CMEC in monoculture. Thus biologically relevant cell-to-cell interactions can be modeled with this in vitro system.


1972 ◽  
Vol 11 (1) ◽  
pp. 249-260
Author(s):  
J. ALWEN ◽  
JENNIFER J. GALLHAI-ATCHARD

A method for preparing suspensions of adult rat hepatocytes suitable for maintenance in vitro is described. Cultures were established from the cell suspensions by the squash technique. Cells were examined by light and electron microscopy; histochemically for glycogen, bile, lipid and glucose-6-phosphatase; and by autoradiography for DNA, RNA and protein synthesis. Hepatocytes could be maintained in vitro for at least 3 days and began to aggregate after 1 day. Uridine and leucine were incorporated, but not thymidine. Cultures consisted mainly of hepatocytes, though reticulo-endothelial cells were sometimes present.


Sign in / Sign up

Export Citation Format

Share Document