In vivo imaging of neural activities along the olfactory circuitry in transgenic zebrafish

2011 ◽  
Vol 71 ◽  
pp. e357
Author(s):  
Tetsuya Koide ◽  
Masamichi Ohkura ◽  
Junichi Nakai ◽  
Yoshihiro Yoshihara
Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 609
Author(s):  
Louise von Gersdorff Jørgensen

The use of zebrafish as a model for human conditions is widely recognized. Within the last couple of decades, the zebrafish has furthermore increasingly been utilized as a model for diseases in aquacultured fish species. The unique tools available in zebrafish present advantages compared to other animal models and unprecedented in vivo imaging and the use of transgenic zebrafish lines have contributed with novel knowledge to this field. In this review, investigations conducted in zebrafish on economically important diseases in aquacultured fish species are included. Studies are summarized on bacterial, viral and parasitic diseases and described in relation to prophylactic approaches, immunology and infection biology. Considerable attention has been assigned to innate and adaptive immunological responses. Finally, advantages and drawbacks of using the zebrafish as a model for aquacultured fish species are discussed.


2016 ◽  
Vol 244 ◽  
pp. e10 ◽  
Author(s):  
A.M. Savage ◽  
C. Mayo ◽  
H.R. Kim ◽  
E. Markham ◽  
F.J.M. van Eeden ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1963
Author(s):  
Surendra K. Rajpurohit ◽  
Aaron Gopal ◽  
May Ye Mon ◽  
Nikhil G. Patel ◽  
Vishal Arora

The zebrafish provided an excellent platform to study the genetic and molecular approach of cellular phenotype-based cardiac research. We designed a novel protocol to develop the transparent transgenic zebrafish model to study annexin-5 activity in the cardiovascular function by generating homozygous transparent skin Casper (roy−/−,nacre−/−); myl7:RFP; annexin-5:YFP transgenic zebrafish. The skin pigmentation background of any vertebrate model organism is a major obstruction for in vivo confocal imaging to study the transgenic cellular phenotype-based study. By developing Casper (roy−/−,nacre−/−); myl7; annexin-5 transparent transgenic zebrafish strain, we established time-lapse in vivo confocal microscopy to study cellular phenotype/pathologies of cardiomyocytes over time to quantify changes in cardiomyocyte morphology and function over time, comparing control and cardiac injury and cardio-oncology. Casper contributes to the study by integrating a transparent characteristic in adult zebrafish that allows for simpler transparent visualization and observation. The Casper (roy−/−,nacre−/−) transgenic progenies developed through cross-breeding with the transgenic strain of Tg (UAS:SEC-Hsa.ANXA5-YFP,myl7:RFP). Confocal and fluorescent microscopy were being used to obtain accurate, precise imaging and to determine fluorescent protein being activated. This study protocol was conducted under two sections; 1.1: Generation of homozygous Tg (UAS:SEC-Hsa.ANXA5-YFP,myl7:RFP); Casper (roy−/−,nacre−/−) zebrafish (generation F01-F06) and 1.2: Screening and sorting the transparent transgenic progeny and in vivo imaging to validate cardiac morphology through in vivo confocal imaging. We coined the newly developed strain as Tg (UAS:SEC-Hsa.ANXA5-YFP,myl7:RFP); Casper (roy−/−,nacre−/−) gmc1. Thus, the newly developed strain maintains transparency of the skin throughout the entire life of zebrafish and is capable of application of a non-invasive in vivo imaging process. These novel results provide an in vivo whole organism-based platform to design high-throughput screening and establish a new horizon for drug discovery in cardiac cell death and cardio-oncology therapeutics and treatment.


Author(s):  
Aina Higuchi ◽  
Eri Wakai ◽  
Yuka Adachi ◽  
Tomoko Tada ◽  
Junko Koiwa ◽  
...  

2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S588-S588
Author(s):  
Vladimir Kepe ◽  
Gregory M Cole ◽  
Jie Liu ◽  
Dorothy G Flood ◽  
Stephen P Trusko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document