Chronic exposure to low dose of bisphenol A causes follicular atresia by inhibiting kisspeptin neurons in anteroventral periventricular nucleus in female mice

2020 ◽  
Vol 79 ◽  
pp. 164-176
Author(s):  
Chuanfeng Tang ◽  
Jia Zhang ◽  
Peiyu Liu ◽  
Yu Zhou ◽  
Qiaoyun Hu ◽  
...  
2013 ◽  
Vol 220 (3) ◽  
pp. 207-218 ◽  
Author(s):  
Emily Panagiotidou ◽  
Sophia Zerva ◽  
Dimitra J Mitsiou ◽  
Michael N Alexis ◽  
Efthymia Kitraki

Bisphenol A (BPA) is an estrogen-mimicking endocrine disruptor. Early-life exposures to low doses of BPA exert long-lasting effects on animals' reproductive and brain physiology. However, little is known about the effects of BPA on the stress–response system. Given the interaction of sex and stress hormones, we examined the effect of a low perinatal BPA exposure on the function of the hypothalamic–pituitary–adrenal (HPA) axis at rest and upon application of acute stress. Throughout pregnancy and lactation rats received daily 40 μg BPA/kg body weight orally via cornflakes. We studied the effect of this low but chronic exposure to BPA in the male and female offspring at puberty. BPA exposure led to abnormal adrenal histology including reduced zona reticularis especially in male offspring, hyperplasia of zona fasciculata in both sexes, and increased adrenal weight in female offspring. BPA-treated females had increased basal corticosterone and reduced hypothalamic glucocorticoid receptors (GR) levels. Stressed BPA-exposed females exhibited anxiety-like behavioral coping, a less rigorous corticosterone response, and did not downregulate GR in the hypothalamus, compared with control females. BPA-exposed males exhibited a heightened corticosterone stress response compared with females; they also displayed increased pro-opiomelanocortin mRNA levels and retained the prestress levels of pituitary corticotropin-releasing hormone-receptor 1, compared with control males. We found that perinatal chronic exposure to a low dose of BPA perturbs the basal and stress-induced activity of the HPA axis in a sexually dimorphic manner at adolescence. Exposure to BPA might contribute to increased susceptibility to stress-related disorders in later life.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Rosanna Chianese ◽  
Andrea Viggiano ◽  
Konrad Urbanek ◽  
Donato Cappetta ◽  
Jacopo Troisi ◽  
...  

2021 ◽  
Vol 65 (s1) ◽  
Author(s):  
Brigitta Bonaldo ◽  
Antonino Casile ◽  
Martina Bettarelli ◽  
Stefano Gotti ◽  
GianCarlo Panzica ◽  
...  

Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific “critical periods” of life, when organisms are more sensitive to hormonal changes (i.e., intrauterine, perinatal, juvenile or puberty periods). In this study, we focused on the effects of chronic exposure to BPA in adult female mice starting during pregnancy. Three months old C57BL/6J females were orally exposed to BPA or to vehicle (corn oil). The treatment (4 µg/kg body weight/day) started the day 0 of pregnancy and continued throughout pregnancy, lactation, and lasted for a total of 20 weeks. BPA-treated dams did not show differences in body weight or food intake, but they showed an altered estrous cycle compared to the controls. In order to evidence alterations in social and sociosexual behaviors, we performed the Three-Chamber test for sociability, and analyzed two hypothalamic circuits (well-known targets of endocrine disruption) particularly involved in the control of social behavior: the vasopressin and the oxytocin systems. The test revealed some alterations in the displaying of social behavior: BPA-treated dams have higher locomotor activity compared to the control dams, probably a signal of high level of anxiety. In addition, BPA-treated dams spent more time interacting with no-tester females than with no-tester males. In brain sections, we observed a decrease of vasopressin immunoreactivity (only in the paraventricular and suprachiasmatic nuclei) of BPA-treated females, while we did not find any alteration of the oxytocin system. In parallel, we have also observed, in the same hypothalamic nuclei, a significant reduction of the membrane estrogen receptor GPER1 expression.


2014 ◽  
Vol 221 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Xiaoli Wang ◽  
Fei Chang ◽  
Yinyang Bai ◽  
Fang Chen ◽  
Jun Zhang ◽  
...  

Bisphenol-A (BPA), an environmental estrogen, adversely affects female reproductive health. However, the underlying mechanisms remain largely unknown. We found that oral administration (p.o.) of BPA (20 μg/kg) to adult female mice at proestrus, but not at estrus or diestrus, significantly increased the levels of plasma E2, LH and FSH, and Gnrh mRNA within 6 h. The administration of BPA at proestrus, but not at diestrus, could elevate the levels of Kiss1 mRNA and kisspeptin protein in anteroventral periventricular nucleus (AVPV) within 6 h. In contrast, the level of Kiss1 mRNA in arcuate nucleus (ARC) was hardly altered by BPA administration. In addition, at proestrus, a single injection (i.c.v.) of BPA dose-dependently enhanced the AVPV-kisspeptin expression within 6 h, this was sensitive to E2 depletion by ovariectomy and an estrogen receptor α (ERα) antagonist. Similarly, the injection of BPA (i.c.v.) at proestrus could elevate the levels of plasma E2, LH, and Gnrh mRNA within 6 h in a dose-dependent manner, which was blocked by antagonists of GPR54 or ERα. Injection of BPA (i.c.v.) at proestrus failed to alter the timing and peak concentration of LH-surge generation. In ovariectomized mice, the application of E2 induced a dose-dependent increase in the AVPV-Kiss1 mRNA level, indicating ‘E2-induced positive feedback’, which was enhanced by BPA injection (i.c.v.). The levels of Erα (Esr1) and Erβ (Esr2) mRNAs in AVPV and ARC did not differ significantly between vehicle-and BPA-treated groups. This study provides in vivo evidence that exposure of adult female mice to a low dose of BPA disrupts the hypothalamic–pituitary–gonadal reproductive endocrine system through enhancing AVPV-kisspeptin expression and release.


Sign in / Sign up

Export Citation Format

Share Document