scholarly journals Exercise-induced changes in brain activity during memory encoding and retrieval after long-term bed rest

NeuroImage ◽  
2020 ◽  
Vol 223 ◽  
pp. 117359
Author(s):  
Anika Friedl-Werner ◽  
Katharina Brauns ◽  
Hanns-Christian Gunga ◽  
Simone Kühn ◽  
Alexander C. Stahn
2016 ◽  
Author(s):  
Edwin Mulder ◽  
Alexandra Noppe ◽  
Ulrich Limper

In the context of space physiology, research is being conducted to understand the physiological effects from radiation, hypogravity, spaceflight and planetary environments. The goal is to identify new methods to address the unique challenges in medical treatment, human factors, and behavioral health support on future exploration missions. As crew size is small and time is limited during actual missions, space agencies resort to addressing the effects of space travel in analog environments that have features similar to those of spaceflight. Head-down tilt bed rest (HDBR), for instance, is one of the established terrestrial models used to simulate some of the physiological changes experienced during spaceflight under weightless conditions and is therefore considered a valuable testbed to prepare for future long-duration exploration missions. HDBR studies are performed in extremely-well controlled laboratory settings, offering the possibility to test the effects of – what is in essence - physical inactivity and fluid shift. However, HDBR studies have a dual purpose, as they are also invaluable for the development, testing and validation of countermeasures aimed at mitigating microgravity-induced changes to the human body. With respect to the latter, the consensus is that short-term bed rest studies (< 14 days) serve foremost as a first screening of potential promising countermeasures, particularly for the cardiovascular system. Screening of preventative procedures and protocols for the muscular system requires at least mid-term (14 -28 days), whereas studies aiming to validate countermeasures for bone require long-term HDBR studies, in the order of 60-90 days. Hitherto the preferred countermeasure during spaceflight has been physical exercise. The presentation will therefore provide a short overview of the current onboard exercise regimen and will, in light of this, outline the scientific background and aims of the ongoing 60-day HDBR study at the :envihab (from the words ‘Environment’ and ‘Habitat’), the DLR Institute of Aerospace Medicine’s state-of-the-art research facility.


Sports ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 46
Author(s):  
Polyxeni Spiliopoulou ◽  
Maria Gavriatopoulou ◽  
Efstathios Kastritis ◽  
Meletios Athanasios Dimopoulos ◽  
Gerasimos Terzis

Immunity in the tumor microenvironment plays a central role in tumor development. Cytotoxic immune cells act against tumors, while tumors manage to trigger immunosuppressive mechanisms for defense. One bout of physical exercise acutely regulates the immune system inducing short-term redistribution of immune cells among body organs. Repeated acute immune cell mobilization with continuing exercise training results in long-term adaptations. These long-term exercise-induced changes in the immune system arise both in healthy and in diseased populations, including cancer patients. Recent preclinical studies indicate that physical exercise may have a positive impact on intra-tumoral immune cell processes, resulting in tumor suppression. This short narrative review describes the effect of physical exercise on tumor growth as detected via changes in tumor immunity. Research evidence shows that exercise may improve tumor-suppressive functions and may reduce tumor-progressive responses and mechanisms of immune cells, controlling tumor development. Specifically, it seems that exercise in rodents triggers shifts in tumor infiltration of macrophages, neutrophils, natural killer cells, cytotoxic and regulatory T lymphocytes, resulting in tumor suppression. These recent promising data suggest that physical exercise could be combined with anticancer immunotherapies, although exercise parameters like intensity, duration, and frequency need to be evaluated in more detail. More research is needed to investigate the effect of exercise in other immune cell subtypes and their possible connection with tumor growth, whilst information from human tumors is also required.


2016 ◽  
Author(s):  
Edwin Mulder ◽  
Alexandra Noppe ◽  
Ulrich Limper

In the context of space physiology, research is being conducted to understand the physiological effects from radiation, hypogravity, spaceflight and planetary environments. The goal is to identify new methods to address the unique challenges in medical treatment, human factors, and behavioral health support on future exploration missions. As crew size is small and time is limited during actual missions, space agencies resort to addressing the effects of space travel in analog environments that have features similar to those of spaceflight. Head-down tilt bed rest (HDBR), for instance, is one of the established terrestrial models used to simulate some of the physiological changes experienced during spaceflight under weightless conditions and is therefore considered a valuable testbed to prepare for future long-duration exploration missions. HDBR studies are performed in extremely-well controlled laboratory settings, offering the possibility to test the effects of – what is in essence - physical inactivity and fluid shift. However, HDBR studies have a dual purpose, as they are also invaluable for the development, testing and validation of countermeasures aimed at mitigating microgravity-induced changes to the human body. With respect to the latter, the consensus is that short-term bed rest studies (< 14 days) serve foremost as a first screening of potential promising countermeasures, particularly for the cardiovascular system. Screening of preventative procedures and protocols for the muscular system requires at least mid-term (14 -28 days), whereas studies aiming to validate countermeasures for bone require long-term HDBR studies, in the order of 60-90 days. Hitherto the preferred countermeasure during spaceflight has been physical exercise. The presentation will therefore provide a short overview of the current onboard exercise regimen and will, in light of this, outline the scientific background and aims of the ongoing 60-day HDBR study at the :envihab (from the words ‘Environment’ and ‘Habitat’), the DLR Institute of Aerospace Medicine’s state-of-the-art research facility.


2018 ◽  
Vol 1 (1) ◽  
pp. 36-46
Author(s):  
Patrick S Ledwidge

Sports-related Concussions (SRC) and their potential long-term effects are a growing concern among athletes and their families. Research utilizing functional brain imaging/recording techniques (e.g., fMRI, ERP) seeks to explain how neurocognitive brain activity changes in the days and years following SRC. Although language deficits are documented following non-sports related concussion there remains a striking lack of research on how SRCs may influence the language system and their supporting neural mechanisms. Neuroimaging findings, however, demonstrate that SRCs alter structural and functional pathways within the frontotemporal language network. Brain regions included in this network generate language-related event-related brain potentials (ERPs), including the N400 and P600. ERPs have been used to demonstrate long-term neurocognitive alterations associated with concussion and may also provide objective and robust markers of SRC-induced changes to the language system.


2015 ◽  
Vol 27 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Haiteng Jiang ◽  
Marcel A. J. van Gerven ◽  
Ole Jensen

It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it reflects the functional disengagement of specific regions in attention and memory tasks. We here ask if such allocation of resources by alpha oscillations generalizes to long-term memory encoding in a cross-modal setting in which we acquired the ongoing brain activity using magnetoencephalography. Participants were asked to encode pictures while ignoring simultaneously presented words and vice versa. We quantified the brain activity during rehearsal reflecting subsequent memory in the different attention conditions. The key finding was that successful long-term memory encoding is reflected by alpha power decreases in the sensory region of the to-be-attended modality and increases in the sensory region of the to-be-ignored modality to suppress distraction during rehearsal period. Our results corroborate related findings from attention studies by demonstrating that alpha activity is also important for the allocation of resources during long-term memory encoding in the presence of distracters.


Sign in / Sign up

Export Citation Format

Share Document