scholarly journals In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex

Neuron ◽  
2015 ◽  
Vol 85 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Aurélie Pala ◽  
Carl C.H. Petersen

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Aurélie Pala ◽  
Carl CH Petersen

The cellular and synaptic mechanisms driving cell-type-specific function during various cortical network activities and behaviors are poorly understood. Here, we targeted whole-cell recordings to two classes of inhibitory GABAergic neurons in layer 2/3 of the barrel cortex of awake head-restrained mice and correlated spontaneous membrane potential dynamics with cortical state and whisking behavior. Using optogenetic stimulation of single layer 2/3 excitatory neurons we measured unitary excitatory postsynaptic potentials (uEPSPs) across states. During active states, characterized by whisking and reduced low-frequency activity in the local field potential, parvalbumin-expressing neurons depolarized and, albeit in a small number of recordings, received uEPSPs with increased amplitude. In contrast, somatostatin-expressing neurons hyperpolarized and reduced firing rates during active states without consistent change in uEPSP amplitude. These results further our understanding of neocortical inhibitory neuron function in awake mice and are consistent with the hypothesis that distinct genetically-defined cell classes have different state-dependent patterns of activity.



2007 ◽  
Vol 97 (6) ◽  
pp. 4380-4385 ◽  
Author(s):  
Soo-Hyun Lee ◽  
Peter W. Land ◽  
Daniel J. Simons

Tactile deprivation in rats produced by whisker-trimming early in life leads to abnormally robust responses of excitatory neurons in layer 4 of primary somatosensory cortex when the re-grown whiskers are stimulated. Present findings from fast-spike neurons indicate that presumed inhibitory cells fire less robustly under the same conditions. These contrasting effects may reflect altered patterns of thalamocortical input to excitatory versus inhibitory cells and/or changes in the strength of intracortical connections. Despite increased excitability of layer 4, neurons in layer 2/3 respond at control levels even after full whisker re-growth. Layer 4 synapses onto supragranular neurons may be permanently depressed as a result of neonatal sensory deprivation.



2021 ◽  
Author(s):  
Joshua B. Melander ◽  
Aran Nayebi ◽  
Bart C. Jongbloets ◽  
Dale A. Fortin ◽  
Maozhen Qin ◽  
...  

SUMMARYCortical function relies on the balanced activation of excitatory and inhibitory neurons. However, little is known about the organization and dynamics of shaft excitatory synapses onto cortical inhibitory interneurons, which cannot be easily identified morphologically. Here, we fluorescently visualize the excitatory postsynaptic marker PSD-95 at endogenous levels as a proxy for excitatory synapses onto layer 2/3 pyramidal neurons and parvalbumin-positive (PV+) inhibitory interneurons in the mouse barrel cortex. Longitudinal in vivo imaging reveals that, while synaptic weights in both neuronal types are log-normally distributed, synapses onto PV+ neurons are less heterogeneous and more stable. Markov-model analyses suggest that the synaptic weight distribution is set intrinsically by ongoing cell type-specific dynamics, and substantial changes are due to accumulated gradual changes. Synaptic weight dynamics are multiplicative, i.e., changes scale with weights, though PV+ synapses also exhibit an additive component. These results reveal that cell type-specific processes govern cortical synaptic strengths and dynamics.



2018 ◽  
Author(s):  
J. Darr ◽  
M. Lassi ◽  
R. Gerlini ◽  
F. Scheid ◽  
M. Hrabě de Angelis ◽  
...  
Keyword(s):  


2021 ◽  
pp. 0271678X2110103
Author(s):  
Nao Hatakeyama ◽  
Miyuki Unekawa ◽  
Juri Murata ◽  
Yutaka Tomita ◽  
Norihiro Suzuki ◽  
...  

A variety of brain cells participates in neurovascular coupling by transmitting and modulating vasoactive signals. The present study aimed to probe cell type-dependent cerebrovascular (i.e., pial and penetrating arterial) responses with optogenetics in the cortex of anesthetized mice. Two lines of the transgenic mice expressing a step function type of light-gated cation channel (channelrhodopsine-2; ChR2) in either cortical neurons (muscarinic acetylcholine receptors) or astrocytes (Mlc1-positive) were used in the experiments. Photo-activation of ChR2-expressing astrocytes resulted in a widespread increase in cerebral blood flow (CBF), extending to the nonstimulated periphery. In contrast, photo-activation of ChR2-expressing neurons led to a relatively localized increase in CBF. The differences in the spatial extent of the CBF responses are potentially explained by differences in the involvement of the vascular compartments. In vivo imaging of the cerebrovascular responses revealed that ChR2-expressing astrocyte activation led to the dilation of both pial and penetrating arteries, whereas ChR2-expressing neuron activation predominantly caused dilation of the penetrating arterioles. Pharmacological studies showed that cell type-specific signaling mechanisms participate in the optogenetically induced cerebrovascular responses. In conclusion, pial and penetrating arterial vasodilation were differentially evoked by ChR2-expressing astrocytes and neurons.



2019 ◽  
Vol 56 ◽  
pp. 160-166 ◽  
Author(s):  
Jelle van den Ameele ◽  
Robert Krautz ◽  
Andrea H Brand
Keyword(s):  






2021 ◽  
Author(s):  
Moataz Dowaidar

Autophagy is a double-edged sword in cancer, and numerous aspects should be taken into account before deciding on the most effective strategy to target the process. The fact that several clinical studies are now ongoing does not mean that the patient group that may benefit from autophagy-targeting medicines has been identified. Autophagy inhibitors that are more potent and specialized, as well as autophagy indicators, are also desperately required. The fact that these inhibitors only work against tumors that rely on autophagy for survival (RAS mutants) makes it difficult to distinguish them from tumors that continue to develop even when autophagy is absent. Furthermore, mutations such as BRAF have been shown to make tumors more susceptible to autophagy suppression, suggesting that targeting such tumours may be a viable strategy for overcoming their chemotherapy resistance. In the meantime, we are unable to identify if autophagy regulation works in vivo or whether it selectively targets a disease while inflicting injury to other healthy organs and tissues. A cell-type-specific impact appears to be observed with such therapy. As a result, it is just as important to consider the differences between tumors that originate in different organs as it is to consider the signaling pathways that are similar across them. For a therapy or cure to be effective, the proposed intervention must be tailored to the specific needs of each patient.Over the last several years, a growing amount of data has implicated autophagy in a variety of disorders, including cancer. In normal cells, this catabolic process is also required for cell survival and homeostasis. Despite the fact that medications targeting intermediates in the autophagy signaling pathway are being created and evaluated at both the preclinical and clinical levels, given the complicated function of autophagy in cancer, we still have a long way to go in terms of establishing an effective therapeutic approach. This article discusses current tactics for exploiting cancer cells' autophagy dependency, as well as obstacles in the area. We believe that the unanswered concerns raised in this work will stimulate researchers to investigate previously unknown connections between autophagy and other signaling pathways, which might lead to the development of novel, highly specialized autophagy therapies.



Sign in / Sign up

Export Citation Format

Share Document