Neural basis of auditory expectation within temporal cortex

2013 ◽  
Vol 51 (11) ◽  
pp. 2245-2250 ◽  
Author(s):  
J.M. Nazimek ◽  
M.D. Hunter ◽  
R. Hoskin ◽  
I. Wilkinson ◽  
P.W. Woodruff
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suhail Matar ◽  
Julien Dirani ◽  
Alec Marantz ◽  
Liina Pylkkänen

AbstractDuring language comprehension, the brain processes not only word meanings, but also the grammatical structure—the “syntax”—that strings words into phrases and sentences. Yet the neural basis of syntax remains contentious, partly due to the elusiveness of experimental designs that vary structure independently of meaning-related variables. Here, we exploit Arabic’s grammatical properties, which enable such a design. We collected magnetoencephalography (MEG) data while participants read the same noun-adjective expressions with zero, one, or two contiguously-written definite articles (e.g., ‘chair purple’; ‘the-chair purple’; ‘the-chair the-purple’), representing equivalent concepts, but with different levels of syntactic complexity (respectively, indefinite phrases: ‘a purple chair’; sentences: ‘The chair is purple.’; definite phrases: ‘the purple chair’). We expected regions processing syntax to respond differently to simple versus complex structures. Single-word controls (‘chair’/‘purple’) addressed definiteness-based accounts. In noun-adjective expressions, syntactic complexity only modulated activity in the left posterior temporal lobe (LPTL), ~ 300 ms after each word’s onset: indefinite phrases induced more MEG-measured positive activity. The effects disappeared in single-word tokens, ruling out non-syntactic interpretations. In contrast, left anterior temporal lobe (LATL) activation was driven by meaning. Overall, the results support models implicating the LPTL in structure building and the LATL in early stages of conceptual combination.


2019 ◽  
Vol 46 (3) ◽  
pp. 562-571 ◽  
Author(s):  
Li Kong ◽  
Christina J Herold ◽  
Eric F C Cheung ◽  
Raymond C K Chan ◽  
Johannes Schröder

Abstract Neurological soft signs (NSS) are often found in patients with schizophrenia. A wealth of neuroimaging studies have reported that NSS are related to disturbed cortical-subcortical-cerebellar circuitry in schizophrenia. However, the association between NSS and brain network abnormalities in patients with schizophrenia remains unclear. In this study, the graph theoretical approach was used to analyze brain network characteristics based on structural magnetic resonance imaging (MRI) data. NSS were assessed using the Heidelberg scale. We found that there was no significant difference in global network properties between individuals with high and low levels of NSS. Regional network analysis showed that NSS were associated with betweenness centrality involving the inferior orbital frontal cortex, the middle temporal cortex, the hippocampus, the supramarginal cortex, the amygdala, and the cerebellum. Global network analysis also demonstrated that NSS were associated with the distribution of network hubs involving the superior medial frontal cortex, the superior and middle temporal cortices, the postcentral cortex, the amygdala, and the cerebellum. Our findings suggest that NSS are associated with alterations in topological attributes of brain networks corresponding to the cortical-subcortical-cerebellum circuit in patients with schizophrenia, which may provide a new perspective for elucidating the neural basis of NSS in schizophrenia.


1993 ◽  
Vol 70 (6) ◽  
pp. 2215-2225 ◽  
Author(s):  
J. L. Ringo ◽  
S. G. O'Neill

1. This study examined nonvisual and indirect inputs to 1,021 single units recorded in inferotemporal and parahippocampal cortex of behaving macaques. 2. To better isolate these influences, a fully split-brain, split-chiasm preparation was used. Extracellular single-unit activity was recorded while the ipsilateral eye was covered. During the recordings the monkeys worked on a visual discrimination task that consisted of a series of presentations of single images. 3. When the interval between presentations was varied randomly (usually between 4 and 15 s) about one-quarter of these cells responded to an alerting tone sounded 500 ms before the onset of the visual image. That this response is due to the warning value of the tone was shown by finding that an identical tone sounded at the end of each trial produced no response from these cells. Use of an exchange between pairs of light-emitting diodes as a warning signal (one turned on as the other was turned off, also 500 ms before the visual stimulus onset) produced a similar response in many units. This indicates a subcortical route for the alerting signal. In most cases, warning responses were inhibitory, often delayed with respect to the warning signal occurrence to more nearly match the image arrival time. 4. Surprisingly, and despite the monkeys' confirmed split-brain status, occasional cells (approximately 2%) showed a response from a visual presentation limited to the other hemisphere. Although this subcortical visual input was far weaker than direct visual input, it was nonetheless statistically reliable. Importantly, the indirect input was stimulus specific and could form the neural basis for a limited interhemispheric visual transfer of the sort seen in human split-brain patients. 5. Also rarely, cells showed activity time locked to the animal's behavioral response.


2008 ◽  
Vol 99 (5) ◽  
pp. 2456-2469 ◽  
Author(s):  
Dirk Ostwald ◽  
Judith M. Lam ◽  
Sheng Li ◽  
Zoe Kourtzi

Extensive psychophysical and computational work proposes that the perception of coherent and meaningful structures in natural images relies on neural processes that convert information about local edges in primary visual cortex to complex object features represented in the temporal cortex. However, the neural basis of these mid-level vision mechanisms in the human brain remains largely unknown. Here, we examine functional MRI (fMRI) selectivity for global forms in the human visual pathways using sensitive multivariate analysis methods that take advantage of information across brain activation patterns. We use Glass patterns, parametrically varying the perceived global form (concentric, radial, translational) while ensuring that the local statistics remain similar. Our findings show a continuum of integration processes that convert selectivity for local signals (orientation, position) in early visual areas to selectivity for global form structure in higher occipitotemporal areas. Interestingly, higher occipitotemporal areas discern differences in global form structure rather than low-level stimulus properties with higher accuracy than early visual areas while relying on information from smaller but more selective neural populations (smaller voxel pattern size), consistent with global pooling mechanisms of local orientation signals. These findings suggest that the human visual system uses a code of increasing efficiency across stages of analysis that is critical for the successful detection and recognition of objects in complex environments.


2008 ◽  
Vol 18 ◽  
pp. S270-S271
Author(s):  
S. Bhattacharyya ◽  
P. Fusar-Poli ◽  
S. Borgwardt ◽  
R. Martin-Santos ◽  
C. O'Carroll ◽  
...  

2004 ◽  
Vol 34 (3) ◽  
pp. 391-400 ◽  
Author(s):  
K.-H. LEE ◽  
T. F. D. FARROW ◽  
S. A. SPENCE ◽  
P. W. R. WOODRUFF

Background. A better understanding of the neural basis of social cognition including mindreading (or theory of mind) and empathy might help to explain some deficits in social functioning in people with schizophrenia. Our aim was to review neuroimaging and neuropsychological studies on social cognition, as they may shed light on the neural mechanisms of social cognition and its dysfunction in patients with schizophrenia.Method. A selective literature review was undertaken.Results. Neuroimaging and neuropsychological studies suggest convergence upon specific networks for mindreading and empathy (the temporal cortex, amygdala and the prefrontal cortex). The frontal lobe is likely to play a central role in enabling social cognition, but mindreading and empathic abilities may require relatively different weighting of subcomponents within the same frontal-temporal social cognition network.Conclusions. Disturbances in social cognition may represent an abnormal interaction between frontal lobe and its functionally connected cortical and subcortical areas. Future studies should seek to explore the heterogeneity of social dysfunction within schizophrenia.


2017 ◽  
Author(s):  
Ashley Prichard ◽  
Peter F. Cook ◽  
Mark Spivak ◽  
Raveena Chhibber ◽  
Gregory S. Berns

AbstractHow do dogs understand human words? At a basic level, understanding would require the discrimination of words from non-words. To determine the mechanisms of such a discrimination, we trained 12 dogs to retrieve two objects based on object names, then probed the neural basis for these auditory discriminations using awake-fMRI. We compared the neural response to these trained words relative to “oddball” pseudowords the dogs had not heard before. Consistent with novelty detection, we found greater activation for pseudowords relative to trained words bilaterally in the parietotemporal cortex. To probe the neural basis for representations of trained words, searchlight multivoxel pattern analysis (MVPA) revealed that a subset of dogs had clusters of informative voxels that discriminated between the two trained words. These clusters included the left temporal cortex and amygdala, left caudate nucleus, and thalamus. These results demonstrate that dogs’ processing of human words utilizes basic processes like novelty detection, and for some dogs, may also include auditory and hedonic representations.


Author(s):  
Vinod Menon

This review examines brain and cognitive processes involved in arithmetic. I take a distinctly developmental perspective because neither the cognitive nor the brain processes involved in arithmetic can be adequately understood outside the framework of how developmental processes unfold. I review four basic neurocognitive processes involved in arithmetic, highlighting (1) the role of core dorsal parietal and ventral temporal-occipital cortex systems that form basic building blocks from which number form and quantity representations are constructed in the brain; (2) procedural and working memory systems anchored in the basal ganglia and frontoparietal circuits, which create short-term representations that allow manipulation of multiple discrete quantities over several seconds; (3) episodic and semantic memory systems anchored in the medial and lateral temporal cortex that play an important role in long-term memory formation and generalization beyond individual problem attributes; and (4) prefrontal cortex control processes that guide allocation of attention resources and retrieval of facts from memory in the service of goal-directed problem solving. Next I examine arithmetic in the developing brain, first focusing on studies comparing arithmetic in children and adults, and then on studies examining development in children during critical stages of skill acquisition. I highlight neurodevelopmental models that go beyond parietal cortex regions involved in number processing, and demonstrate that brain systems and circuits in the developing child brain are clearly not the same as those seen in more mature adult brains sculpted by years of learning. The implications of these findings for a more comprehensive view of the neural basis of arithmetic in both children and adults are discussed.


2018 ◽  
Vol 30 (9) ◽  
pp. 1281-1297 ◽  
Author(s):  
Alexa Tompary ◽  
Naseem Al-Aidroos ◽  
Nicholas B. Turk-Browne

Top–down attention prioritizes the processing of goal-relevant information throughout visual cortex based on where that information is found in space and what it looks like. Whereas attentional goals often have both spatial and featural components, most research on the neural basis of attention has examined these components separately. Here we investigated how these attentional components are integrated by examining the attentional modulation of functional connectivity between visual areas with different selectivity. Specifically, we used fMRI to measure temporal correlations between spatially selective regions of early visual cortex and category-selective regions in ventral temporal cortex while participants performed a task that benefitted from both spatial and categorical attention. We found that categorical attention modulated the connectivity of category-selective areas, but only with retinotopic areas that coded for the spatially attended location. Similarly, spatial attention modulated the connectivity of retinotopic areas only with the areas coding for the attended category. This pattern of results suggests that attentional modulation of connectivity is driven both by spatial selection and featural biases. Combined with exploratory analyses of frontoparietal areas that track these changes in connectivity among visual areas, this study begins to shed light on how different components of attention are integrated in support of more complex behavioral goals.


2009 ◽  
Vol 40 (7) ◽  
pp. 1183-1192 ◽  
Author(s):  
J. Hall ◽  
H. C. Whalley ◽  
J. W. McKirdy ◽  
R. Sprengelmeyer ◽  
I. M. Santos ◽  
...  

BackgroundA wide range of neuropsychiatric conditions, including schizophrenia and autistic spectrum disorder (ASD), are associated with impairments in social function. Previous studies have shown that individuals with schizophrenia and ASD have deficits in making a wide range of social judgements from faces, including decisions related to threat (such as judgements of approachability) and decisions not related to physical threat (such as judgements of intelligence). We have investigated healthy control participants to see whether there is a common neural system activated during such social decisions, on the basis that deficits in this system may contribute to the impairments seen in these disorders.MethodWe investigated the neural basis of social decision making during judgements of approachability and intelligence from faces in 24 healthy participants using functional magnetic resonance imaging (fMRI). We used conjunction analysis to identify common brain regions activated during both tasks.ResultsActivation of the amygdala, medial prefrontal cortex, inferior prefrontal cortex and cerebellum was seen during performance of both social tasks, compared to simple gender judgements from the same stimuli. Task-specific activations were present in the dorsolateral prefrontal cortex in the intelligence task and in the inferior and middle temporal cortex in the approachability task.ConclusionsThe present study identified a common network of brain regions activated during the performance of two different forms of social judgement from faces. Dysfunction of this network is likely to contribute to the broad-ranging deficits in social function seen in psychiatric disorders such as schizophrenia and ASD.


Sign in / Sign up

Export Citation Format

Share Document