scholarly journals Abnormalities in the brain of streptozotocin-induced type 1 diabetic rats revealed by diffusion tensor imaging

2012 ◽  
Vol 1 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Mingming Huang ◽  
Lifeng Gao ◽  
Liqin Yang ◽  
Fuchun Lin ◽  
Hao Lei
2020 ◽  
Vol 71 ◽  
pp. 105-114
Author(s):  
Lifeng Gao ◽  
Mingming Huang ◽  
Xiaowen Luo ◽  
Tao Song ◽  
Xuxia Wang ◽  
...  

2020 ◽  
Author(s):  
Mengping Huang ◽  
Xin Lu ◽  
Xiaofeng Wang ◽  
Jian Shu

Abstract Background Diffusion tensor imaging (DTI) is mainly used for detecting white matter fiber in the brain. From this, DTI has been applied to assess fiber in liver disorders by prior studies. But non-sufficient data has been obtained if DTI could be used for exactly staging chronic hepatitis. This study is to assess the value of DTI for staging of liver fibrosis (F), necroinflammatory activity (A), and steatosis (S) of chronic hepatitis in rats. Methods Seventy male Sprague-Dawley rats were divided into control group(n = 10) and experimental group(n = 60). The rat models of chronic hepatitis were established by abdominal subcutaneous injections of 40% CCl4. All rats underwent 3.0T MRI. ROIs were placed on DTI to estimate MR parameters (rADC value and FA value). Histopathology was the reference standard. Multiple linear regression was used to analyze the association between MR parameters and pathology. The differences in rADC value and FA value among pathological stages were evaluated by MANOVA or ANOVA. LSD was used to test the differences between each two groups. ROC analysis was performed. Results The numbers of each pathology were as follows: F0(n = 15), F1(n = 11), F2(n = 6), F3(n = 9), F4(n = 6); A0(n = 8), A1(n = 16), A2(n = 16), A3(n = 7); S0(n = 10), S1(n = 7), S2(n = 3), S3(n = 11), S4(n = 16). The rADC value had a negative correlation with liver fibrosis (r=-0.392, P = 0.008) and inflammation (r=-0.359, P = 0.015). FA value had a positive correlation with fibrosis (r = 0.409, P = 0.005). Significant differences were found in FA value between F4 and F0 ~ F3 (P = 0.03), while no significant differences among F0 ~ F3 were found (P > 0.05). AUC of FA value in differentiating F4 from F0 ~ F3 was 0.909(p < 0.001) with 83.3% Sensitivity, 85.4% specificity when the FA value was at the cut-off of 588.089(× 10− 6mm2/s). Conclusion FA value for DTI can distinguish early cirrhosis from normal, mild and moderate liver fibrosis.


ASN NEURO ◽  
2018 ◽  
Vol 10 ◽  
pp. 175909141775380 ◽  
Author(s):  
Angela M. Muller ◽  
Naznin Virji-Babul

Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions ( n = 6) and a group of healthy adolescent athletes ( n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort.


2009 ◽  
Vol 51 (4) ◽  
pp. 253-263 ◽  
Author(s):  
Ulrike Löbel ◽  
Jan Sedlacik ◽  
Daniel Güllmar ◽  
Werner A. Kaiser ◽  
Jürgen R. Reichenbach ◽  
...  

Author(s):  
Piotr Podwalski ◽  
Krzysztof Szczygieł ◽  
Ernest Tyburski ◽  
Leszek Sagan ◽  
Błażej Misiak ◽  
...  

Abstract Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.


Sign in / Sign up

Export Citation Format

Share Document