scholarly journals Determination of L-X-ray line emission intensities in the decay of Cm-244 with a metallic magnetic calorimeter

Author(s):  
Riham Mariam ◽  
Matias Rodrigues ◽  
Martin Loidl
2015 ◽  
Vol 10 (3) ◽  
pp. 128-134 ◽  
Author(s):  
O. Omelnyk ◽  
◽  
V. Levenets ◽  
A. Lonin ◽  
A. Shchur ◽  
...  
Keyword(s):  

2008 ◽  
Vol 151 (1-2) ◽  
pp. 357-362 ◽  
Author(s):  
W.-T. Hsieh ◽  
J. A. Adams ◽  
S. R. Bandler ◽  
J. Beyer ◽  
K. L. Denis ◽  
...  

2017 ◽  
Vol 35 (3) ◽  
pp. 505-512 ◽  
Author(s):  
C. Kaur ◽  
S. Chaurasia ◽  
A.A. Pisal ◽  
A.K. Rossall ◽  
D.S. Munda ◽  
...  

AbstractIn this experiment, a comparative study of ion and X-ray emission from both a SiO2 aerogel foam and a quartz target is performed. The experiment is performed using Nd:glass laser system operated at laser energy up to 15 J with a pulse duration of 500 ps with focusable intensity of 1013–1014 W/cm2 on target. X-ray fluxes in different spectral ranges (soft and hard) are measured by using X-ray diodes covered with Al filters of thickness 5 µm (0.9–1.56 keV) and 20 µm (3.4–16 keV). A 2.5 times enhancement in soft X-ray flux (0.9–1.56 keV) and a decrease of 1.8 times in hard X rays (3.4–16 keV) for 50 mg/cc SiO2 aerogel foam is observed compared with the solid quartz. A decrease in the flux of the K-shell line emission spectrum of soft X rays is noticed in the case of the foam targets. The high-resolution K-shell spectra (He-like) of Si ions in both the cases are analyzed for the determination of plasma parameters by comparing with FLYCHK simulations. The estimated plasma temperature and density are Tc = 180 eV, ne = 7 × 1020 cm−3 and Tc = 190 eV, ne = 4 × 1020 cm−3 for quartz and SiO2 aerogel foam, respectively. To measure the evolution of the plasma moving away from the targets, four identical ion collectors are placed at different angles (22.5, 30, 45, and 67.5°) from target normal. The angular distribution of the thermal ions are scaled as cosnθ with respect to target normal, where n = 3.8 and 4.8 for the foam and quartz, respectively. The experimental plasma volume measured from the ion collectors and shadowgraphy images are verified by a two-dimensional Eulerian radiative–hydrodynamic simulation (POLLUX code).


2008 ◽  
Vol 151 (3-4) ◽  
pp. 1080-1086 ◽  
Author(s):  
M. Rodrigues ◽  
E. Leblanc ◽  
M. Loidl ◽  
J. Bouchard ◽  
B. Censier ◽  
...  

1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Sign in / Sign up

Export Citation Format

Share Document