scholarly journals Phase space of positron trajectories exiting a charged particle source through a magnetic field point cusp

Author(s):  
A.S. Kiester ◽  
J.L. Pacheco ◽  
C.A. Ordonez ◽  
D.L. Weathers
2007 ◽  
Vol 04 (04) ◽  
pp. 523-532 ◽  
Author(s):  
JOSÉ M. ISIDRO

In symplectic mechanics, the magnetic term describing the interaction between a charged particle and an external magnetic field has to be introduced by hand. On the contrary, in generalized complex geometry, such magnetic terms in the symplectic form arise naturally by means of B-transformations. Here we prove that, regarding classical phase space as a generalized complex manifold, the transformation law for the symplectic form under the action of a weak magnetic field gives rise to Dirac's prescription for Poisson brackets in the presence of constraints.


10.14311/1185 ◽  
2010 ◽  
Vol 50 (3) ◽  
Author(s):  
J. P. Gazeau ◽  
M. C. Baldiotti ◽  
D. M. Gitman

Berezin-Klauder-Toeplitz (“anti-Wick”) or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian) coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.


1972 ◽  
Vol 50 (3) ◽  
pp. 185-195
Author(s):  
Thomas F. Knott

It has been proposed by Enga and Bloom that combined electric and magnetic helical quadrupole fields may be used to perform a Stern–Gerlach experiment on charged particles. A detailed investigation shows that the longitudinal Lorentz force due to coupling of the transverse velocity of the particles to the transverse magnetic field produces an additional focusing effect which masks the Stern–Gerlach force in large regions of initial phase space. Consideration of uncompensated magnetic fields, produced by small random variations in conductor dimensions and location, shows that the tolerances required to preserve spin separation in the useful range of initial conditions are several orders of magnitude higher than can be achieved at this time.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 45-52 ◽  
Author(s):  
R. E. Ergun ◽  
L. Andersson ◽  
C. W. Carlson ◽  
D. L. Newman ◽  
M. V. Goldman

Abstract. Direct observations of magnetic-field-aligned (parallel) electric fields in the downward current region of the aurora provide decisive evidence of naturally occurring double layers. We report measurements of parallel electric fields, electron fluxes and ion fluxes related to double layers that are responsible for particle acceleration. The observations suggest that parallel electric fields organize into a structure of three distinct, narrowly-confined regions along the magnetic field (B). In the "ramp" region, the measured parallel electric field forms a nearly-monotonic potential ramp that is localized to ~ 10 Debye lengths along B. The ramp is moving parallel to B at the ion acoustic speed (vs) and in the same direction as the accelerated electrons. On the high-potential side of the ramp, in the "beam" region, an unstable electron beam is seen for roughly another 10 Debye lengths along B. The electron beam is rapidly stabilized by intense electrostatic waves and nonlinear structures interpreted as electron phase-space holes. The "wave" region is physically separated from the ramp by the beam region. Numerical simulations reproduce a similar ramp structure, beam region, electrostatic turbulence region and plasma characteristics as seen in the observations. These results suggest that large double layers can account for the parallel electric field in the downward current region and that intense electrostatic turbulence rapidly stabilizes the accelerated electron distributions. These results also demonstrate that parallel electric fields are directly associated with the generation of large-amplitude electron phase-space holes and plasma waves.


2021 ◽  
Vol 8 (1) ◽  
pp. 456-478
Author(s):  
J. Marvin Herndon

Earth’s magnetic field acts as a shield, protecting life and our electrically-based infrastructure from the rampaging, charged-particle solar wind. In the geologic past, the geomagnetic field has collapsed, with or without polarity reversal, and inevitably it will again. The potential consequences of geomagnetic collapse have not only been greatly underestimated, but governments, scientists, and the public have been deceived as to the underlying science. Instead of trying to refute or advance a paradigm shift that occurred in 1979, global geoscientists, individuals and institutions, chose to function as a cartel and continued to promote their very-flawed concepts that had their origin in the 1930s and 1940s, consequently wasting vast amounts of taxpayer-provided research money, and making no meaningful advances or understanding. Here, from a first person perspective, I describe the logical progression of understanding from that paradigm shift, review the advances made and their concomitant implications, and touch upon a few of the many efforts that were made to deceive government officials, scientists, and the public. It is worrisome that geoscientists almost universally have engaged in suppressing or ignoring sound scientific advances, including those with potentially adverse implications for humanity. All of this suggests that the entire institutional structure of the geophysical sciences, funding, institutions, and bureaucracies should be radically reformed.


1987 ◽  
Vol 55 (4) ◽  
pp. 375-376 ◽  
Author(s):  
Walter C. Henneberger ◽  
Mojtaba Jafarpour

Sign in / Sign up

Export Citation Format

Share Document