Humanity Imperiled by the Geomagnetic Field and Human Corruption

2021 ◽  
Vol 8 (1) ◽  
pp. 456-478
Author(s):  
J. Marvin Herndon

Earth’s magnetic field acts as a shield, protecting life and our electrically-based infrastructure from the rampaging, charged-particle solar wind. In the geologic past, the geomagnetic field has collapsed, with or without polarity reversal, and inevitably it will again. The potential consequences of geomagnetic collapse have not only been greatly underestimated, but governments, scientists, and the public have been deceived as to the underlying science. Instead of trying to refute or advance a paradigm shift that occurred in 1979, global geoscientists, individuals and institutions, chose to function as a cartel and continued to promote their very-flawed concepts that had their origin in the 1930s and 1940s, consequently wasting vast amounts of taxpayer-provided research money, and making no meaningful advances or understanding. Here, from a first person perspective, I describe the logical progression of understanding from that paradigm shift, review the advances made and their concomitant implications, and touch upon a few of the many efforts that were made to deceive government officials, scientists, and the public. It is worrisome that geoscientists almost universally have engaged in suppressing or ignoring sound scientific advances, including those with potentially adverse implications for humanity. All of this suggests that the entire institutional structure of the geophysical sciences, funding, institutions, and bureaucracies should be radically reformed.

1999 ◽  
Vol 17 (10) ◽  
pp. 1245-1250 ◽  
Author(s):  
S. Lepidi ◽  
P. Francia ◽  
U. Villante ◽  
A. Meloni ◽  
A. J. Lazarus ◽  
...  

Abstract. An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay) and a low latitude (L'Aquila, Italy) station during the Earth's passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz) and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth's magnetosphere. Key words. Magnetospheric physics (MHD waves and instabilities; solar wind-magnetosphere interactions)


2007 ◽  
Vol 191 ◽  
pp. 644-670 ◽  
Author(s):  
Murray Scot Tanner ◽  
Eric Green

AbstractThis article extends the enduring debate over the balance of central versus local government control to China's cornerstone of state coercive control: the public security (civilian police) system. A recent series of studies argues that during the 1990s central authorities made terrific progress in regaining influence over local officials across a wide variety of issue-areas. This study, by contrast, argues that each policy sector in China has developed its own historical and institutional set of “lessons” that help structure power in that sector. Likewise, the particular issues in each policy sector create unique challenges for “principals” trying to monitor their “agents.” Regarding internal security, the historical lessons the Party has derived from past security crises combine with the uniquely difficult challenges of monitoring police activities to create a system in which local Party and government officials have tremendous power over policing. The many institutions intended to help central authorities control, oversee and monitor local policing actually provide weak control and oversight. These obstacles to central leadership create tremendous additional challenges to building rule by law in China.


2018 ◽  
Vol 15 (1) ◽  
pp. 85-95 ◽  
Author(s):  
John Schwenkler

A philosophical account of self-knowledge should offer more than an epistemological explanation of first-personal privilege. It should also address the many cases where the first-person perspective is not so privileged, and account for the importance of self-knowledge to a person’s social and psychological well-being. Quassim Cassam’s Self-Knowledge for Humans and John Doris’s Talking to Our Selves both emphasize the importance of these latter tasks, but neither author is wholly successful: Cassam’s argument rests on a gross distortion of the “Rationalist” picture he sets up as a foil, and Doris’s on a skeptical argument that stands in some questionable company.


1988 ◽  
Vol 6 (3) ◽  
pp. 503-511 ◽  
Author(s):  
T. A. Potemra ◽  
M. J. Engebretson ◽  
L. J. Zanetti ◽  
R. E. Erlandson ◽  
P. F. Bythrow

When viewed from outer space, the earth's magnetic field does not resemble a simple dipole, but is severely distorted into a comet-shaped configuration by the continuous flow of solar wind plasma. A complicated system of currents flows within this distorted magnetic field configuration called the ‘magnetosphere’ (See figure 1). For example, the compression of the geomagnetic field by the solar wind on the dayside of the earth is associated with a large-scale current flowing across the geomagnetic field lines, called the ‘Chapman-Ferraro’ or magnetopause current. The magnetospheric system includes large-scale currents that flow in the ‘tail’, the ring current that flows at high altitudes around the equator of the earth, field-aligned ‘Birkeland’ currents that flow along geomagnetic field lines into and away from the two auroral regions, and a complex system of currents that flows completely within the layers of the ionosphere, the earth's ionized atmosphere. The intensities of these various currents reach millions of amperes and are closely related to solar activity. The geomagnetic field lines can also oscillate, like giant vibrating strings, at specified resonant frequencies. The effects of these vibrations, sometimes described as ‘standing Alfvén waves’, have been observed on the ground in magnetic field recordings dating back to the beginning of the century. Observations of currents and waves with satellite-borne magnetic field experiments have provided a new perspective on the complicated plasma processes that occur in the magnetosphere. Some of the new observations are described here.


2009 ◽  
Vol 8 (3) ◽  
pp. 147-159 ◽  
Author(s):  
Karl-Heinz Glassmeier ◽  
Otto Richter ◽  
Joachim Vogt ◽  
Petra Möbus ◽  
Antje Schwalb

AbstractThe Earth is embedded in the solar wind, this ever-streaming extremely tenuous ionized gas emanating from the Sun. It is the geomagnetic field which inhibits the solar wind plasma to directly impinge upon the terrestrial atmosphere. It is also the geomagnetic field which moderates and controls the entry of energetic particles of cosmic and solar origin into the atmosphere. During geomagnetic polarity transitions the terrestrial magnetic field decays down to about 10% of its current value. Also, the magnetic field topology changes from a dipole dominated structure to a multipole dominated topology. What happens to the Earth system during such a polarity transition, that is, during episodes of a weak transition field? Which modifications of the configuration of the terrestrial magnetosphere can be expected? Is there any influence on the atmosphere from the intensified particle bombardment? What are the possible effects on the biosphere? Is a polarity transition another example of a cosmic cataclysm? A review is provided on the current understanding of the problem. A first, illustrating model is also discussed to outline the complexity of any biospheric reaction on polarity transitions.


2017 ◽  
Vol 3 (3) ◽  
pp. 15-19
Author(s):  
Владимир Мишин ◽  
Vladimir Mishin ◽  
Юрий Караваев ◽  
Yuriy Karavaev

From data of three three superstorms we study new features of the saturation process of the polar cap magnetic flux deceleration of its area at strengthening the solar wind (SW). It is shown that the saturation of the polar cap is observed at growth of the SW dynamic pressure and vertical IMF component for both signs. Saturation is realized not only during the passage of interplanetary magnetic clouds, but also at significant enhancement of SW density, when the SW thermal pressure is comparable with the pressure of the interplanetary magnetic field. We assume that at such condiitions the saturation is caused not only by a decrease in the efficiency of reconnection at the dayside magnetopause, but mainly by a finite magnetosphere compressibility –stopping the magnetopause compression due to the rapid Eathward growth of the geomagnetic field, ie, interior magnetospheric structure of the geomagnetic field


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 134
Author(s):  
Gerrit Coddens

The Stern–Gerlach experiment is notoriously counter-intuitive. The official theory is that the spin of a fermion remains always aligned with the magnetic field. Its directions are thus quantized: It can only be spin-up or spin-down. However, that theory is based on mathematical errors in the way it (mis)treats spinors and group theory. We present here a mathematically rigorous theory for a fermion in a magnetic field, which is no longer counter-intuitive. It is based on an understanding of spinors in SU(2) which is only Euclidean geometry. Contrary to what Pauli has been reading into the Stern–Gerlach experiment, the spin directions are not quantized. The new corrected paradigm, which solves all conceptual problems, is that the fermions precess around the magnetic-field just as Einstein and Ehrenfest had conjectured. Surprisingly, this leads to only two energy states, which should be qualified as precession-up and precession-down rather than spin-up and spin-down. Indeed, despite the presence of the many different possible angles θ between the spin axis s and the magnetic field B, the fermions can only have two possible energies m0c2±μB. The values ±μB thus do not correspond to the continuum of values −μ·B Einstein and Ehrenfest had conjectured. The energy term V=−μ·B is a macroscopic quantity. It is a statistical average over a large ensemble of fermions distributed over the two microscopic states with energies ±μB, and as such not valid for individual fermions. The two fermion states with energy ±μB are not potential-energy states. We also explain the mathematically rigorous meaning of the up and down spinors. They represent left-handed and right-handed reference frames, such that now everything is intuitively clear and understandable in simple geometrical terms. The paradigm shift does not affect the Pauli principle.


Urgency. The atmosphere and geospace are widely used as a radio channel in solving problems of radar, radio navigation, direction finding, radio communication, radio astronomy, and the remote sensing of the Earth from space or the near-earth environment from the surface of the planet. The parameters of the atmospheric-space radio channel are determined by the state of tropospheric and space weather, which is formed mainly by non-stationary processes on the Sun (solar storms) and partly by high-energy processes on the Earth and in the atmosphere. Geospace storms give rise to the strongest disturbances of the atmospheric-space radio channel, and it is important to note that these storms are diverse, so that no two storms are alike. At the same time, storms have both similar and individual features. Currently, there is insufficient knowledge about both of these features, and their study remains an urgent task of space geophysics and space radio physics. In particular, the identification of general patterns is advisable by performing a statistical analysis of a large number of storms. The aim of this work is to statistically analyze the parameters of the solar wind and geomagnetic field during the Solar Cycle 24 activity (2009–2020). Methods and Methodology. The parameters of the disturbed solar wind (number density nsw, velocity Vsw, and temperature Tsw), the disturbed values of the By- and Bz-components of the interplanetary magnetic field, which is the cause of magnetic storms on Earth, as well as the indices of geomagnetic activity (AE, Dst and Kp) are selected as source input to the study. In this paper, geomagnetic storms with Kр ≥ 5 or G1, G2, G3, and G4 geomagnetic storms are considered. In total, there were 153 storms with Kp ≥ 5. The time series of the nsw, Vsw, Tsw maximum values, of the By- and Bz-components, and of the AE, Dst and Kp indices, as well as of the Bz-component and the Dst index minimum values have been analyzed. Results. The main statistical characteristics of the parameters of the solar wind, interplanetary magnetic field, and of the geomagnetic field have been determined for 153 events that took place during Solar Cycle 24. Conclusions. The geomagnetic situation during Solar Cycle 24 was calmer than during Solar Cycle 23.


Sign in / Sign up

Export Citation Format

Share Document