scholarly journals Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al-4V

2018 ◽  
Vol 1 (4) ◽  
pp. 218-225 ◽  
Author(s):  
Amin Dadgari ◽  
Dehong Huo ◽  
David Swailes
Author(s):  
Shreyas Shashidhara ◽  
Xinyu Liu ◽  
Weihang Zhu ◽  
James Curry ◽  
Victor Zaloom

The objective of this project is to experimentally investigate the influence of Minimum Quantity Lubrication (MQL) on tool wear and tool life in micro hardmilling. The experiments were performed on stainless steel using uncoated WC micro-mill with the nominal diameter of 508 microns. The tool wear is characterized by the volume of the material loss at the tool tip. In order to reveal the progression of the tool wear, the worn tool was examined periodically under SEM after a fixed amount of workpiece material removal (1.25 mm3 or 5 slots in this study). The tool life was characterized as the amount of material removed, instead of the conventional cutting times. The feedrate and the spindle speed were fixed, and two levels of axial depth of cut (50 and 75 microns) were compared. The higher depth of cut leads to longer tool life. The machining performance under MQL is superior to the dry machining for both process conditions in terms of the tool life. The cutting forces in feed direction and the surface roughness at the bottom of the slots were also examined during the experiments. The magnitude of the machining forces showed cyclic pattern for both MQL and dry machining. The SEM images and the cutting force signals suggested that the dominant mode of the tool wear in micro-milling is edge chipping and abrasive wear at the tool tip. The loss of the micro-grain of WC at the cutting edge leads to edge chipping, which reduces the effective cutting diameter; the abrasive wear enlarge the edge radius, causing the cutting force increase. As the cutting edge radius reaches a certain dimension, the whole edge was stripped off, a new edge formed with a smaller edge radius, and the cycle restarts. Under MQL cutting conditions, three cycles were observed before tool failure, while under dry machining conditions, the tool only experienced two cycles before tool breakage. The surface roughness at the bottom of the slots improved significantly with the application of MQL for all levels of the tool wear. The surface roughness did not increase drastically as the tool wear increased. It reached a plateau after the tool wear went into gradual wear state. Further experiments and theoretical analysis will be pursued in the future to gain a deeper understanding of tool wear mechanism in micro-milling.


Author(s):  
D D Zhang

Accurate prediction of tool life is essential to guarantee surface quality and economics of cutting operations in face milling. This article presents a procedure for tool life prediction through in-process adaptation of tool wear rate based on indirect measures. The procedure effectively accounts for the uncertainty of tool wear progress owing to the complexity of the machining process. First, sensor fusion of spindle motor current AC and DC portions is taken to estimate the actual tool wear through relevance vector machine. Then, a tool life prediction model relating flank wear with cutting time is proposed for tracking the progress of tool wear under certain cutting settings. Further, a recursive least square algorithm is developed to update the parameters of the tool life prediction model by considering the error between the predicted tool wear and the estimated tool wear. Finally, the updated model capturing the uncertainty of tool wear progress is used to predict tool life in face milling. Tool life experiments validate that the adaptive procedure can quickly track the progress of tool wear, and make more accurate prediction of tool life compared with the procedure with constant model parameters.


2021 ◽  
Vol 71 ◽  
pp. 679-698
Author(s):  
Sumant Bagri ◽  
Ashish Manwar ◽  
Alwin Varghese ◽  
Soham Mujumdar ◽  
Suhas S. Joshi

2020 ◽  
Author(s):  
Qilin Xiang ◽  
Aibo Xu ◽  
Ling Yuan ◽  
Xiang Hu ◽  
Liwei Luo ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5011
Author(s):  
Cécile Escaich ◽  
Zhongde Shi ◽  
Luc Baron ◽  
Marek Balazinski

The TiC particles in titanium metal matrix composites (TiMMCs) make them difficult to machine. As a specific MMC, it is legitimate to wonder if the cutting mechanisms of TiMMCs are the same as or similar to those of MMCs. For this purpose, the tool wear mechanisms for turning, milling, and grinding are reviewed in this paper and compared with those for other MMCs. In addition, the chip formation and morphology, the material removal mechanism and surface quality are discussed for the different machining processes and examined thoroughly. Comparisons of the machining mechanisms between the TiMMCs and MMCs indicate that the findings for other MMCs should not be taken for granted for TiMMCs for the machining processes reviewed. The increase in cutting speed leads to a decrease in roughness value during grinding and an increase of the tool life during turning. Unconventional machining such as laser-assisted turning is effective to increase tool life. Under certain conditions, a “wear shield” was observed during the early stages of tool wear during turning, thereby increasing tool life considerably. The studies carried out on milling showed that the cutting parameters affecting surface roughness and tool wear are dependent on the tool material. The high temperatures and high shears that occur during machining lead to microstructural changes in the workpiece during grinding, and in the chips during turning. The adiabatic shear band (ASB) of the chips is the seat of the sub-grains’ formation. Finally, the cutting speed and lubrication influenced dust emission during turning but more studies are needed to validate this finding. For the milling or grinding, there are major areas to be considered for thoroughly understanding the machining behavior of TiMMCs (tool wear mechanisms, chip formation, dust emission, etc.).


Author(s):  
Andres F. Clarens ◽  
Ye-Eun Park ◽  
Jacob Temme ◽  
Kim Hayes ◽  
Fu Zhao ◽  
...  

Carbon Dioxide is an industrial byproduct that has been proposed as an alternative metalworking fluid (MWF) carrier with lower environmental impacts and better cooling potential than existing MWFs. This paper investigates the heat removal and tool life effects of rapidly expanding supercritical CO2 (scCO2)-based MWFs relative to MWFs delivered as a flood of semi-synthetic emulsion or as minimum quantity lubrication (MQL) sprays. When cutting both compacted graphite iron (CGI) and titanium, tool wear was most effectively controlled using the scCO2-based MWF compared with the other MWFs. Analysis in this paper suggests that the performance benefit imparted by rapidly expanding scCO2 appears to be related to both the cooling potential and penetration of the sprays into the cutting zone. High-pressure gas sprays have lower viscosity and higher velocity than conventional MWFs. An experiment in which the spray direction was varied clearly demonstrated the importance of spray penetration in tool wear suppression. The type of gas spray is also a significant factor in tool wear suppression. For instance, a spray of N2 delivered under similar conditions to CO2 effectively reduced tool wear relative to water based fluids, but not as much as CO2. This result is particularly relevant for MQL sprays which are shown to not cool nearly as effectively as scCO2 MWFs. These results inform development of scCO2-based MWFs in other machining operations, and provide insight into the optimization of scCO2 MWF delivery.


Sign in / Sign up

Export Citation Format

Share Document