Control of the sympathetic nervous system by TRPV1 in the regulation of body temperature

Neuropeptides ◽  
2017 ◽  
Vol 65 ◽  
pp. 131-132
Author(s):  
Khadija Alawi ◽  
Aisah Aubdool ◽  
Lihuan Liang ◽  
Elena Wilde ◽  
Abhinav Vepa ◽  
...  
1959 ◽  
Vol 52 (1) ◽  
pp. 66-71 ◽  
Author(s):  
G. C. Taneja

Two calves (Aberdeen Angus and American Brahman) were used exposed to different combinations of wet- and dry-bulb temperatures in a psychromatric chamber at the Physiology Department of the University of Queensland. These animals were 7–8 months old when first exposed to heat.Effect of various drugs affecting the sympathetic nervous system (adrenaline, noradrenaline, Dibenamine, Priscol, atropine and acetylcholine) on the rate of cutaneous evaporation in calves was tested. Cutaneous evaporation was measured by means of a capsule before and after the administration of these drugs.Cutaneous evaporation increased with the introduction of adrenaline and was suppressed by the administration of Dibenamine. Noradrenaline and Priscol had no appreciable effect. Acetylcholine failed to stimulate sweating and atropine did not block the sweat glands.Sweat glands of cattle were, therefore, found to be functional and their innervation adrenergic. Cattle use sweat to prevent body temperature from rising, yet the amount of sweat secreted is not large enough to allow cattle to maintain thermoneutrality at high air temperatures.


Rangifer ◽  
1981 ◽  
Vol 1 (1) ◽  
pp. 29 ◽  
Author(s):  
R. Hissa ◽  
S. Saarela ◽  
M. Nieminen

<p>Development of temperature regulation was investigated by determining the ability of newborn reindeer calves (Rangifer tarandus tarandus) to maintain a normal body temperature when exposed to an incrementially decreasing ambient temperature. Newborn calves (1 day old) can maintain their body temperature even at -15 &deg;C. They can increase their metabolic rate five- to sixfold. Heat production is primarily stimulated by the sympathetic nervous system. The response to exogenous administration of noradrenaline and propranolol was investigated.</p><p>Poronvasan l&aring;mmons&aring;&aring;telyn syntym&aring;nj&aring;lkeinen kehittyminen.</p><p>Abstract in Finnish / Yhteenveto: Vastasyntyneiden poronvasojen kylmansietoa ja lammonsaatelya tutkittiin toukokuussa 1981 Inarin Kaamasessa Paliskuntain yhdistyksen koetarhassa. Tutkittavat vasat olivat 1-10 vuorokauden ikaisia. Vasa asetettiin j&aring;&aring;hdytett&aring;va&aring;n mittauskammioon. Sen aineenvaihdunta, lampotilat niin ihon eri kohdista kuin perasuolesta, lihasvarina ja sydanfrekvenssi rekisteroitiin jatkuvasti. Tulosten mukaan naytt&aring;a silt&aring; kuin 1 vuorokauden ikaiselle vasalle -15 &deg;C olisi ehdoton alaraja l&aring;mpotilan s&aring;&aring;telyssa. Se kykeni kohottamaan hapenkulutusta talloin 5-kertaisesti. Lihasvarinan merkitys on vahainen verrattuna kemialliseen l&aring;mmontuottoon kylmassa. Tama voitiin osoittaa injisoimalla vasaan sympaattisen hermoston valittajaainetta noradrenaliinia.</p><p>Temperaturreguleringens utvikling hos nyf&oslash;dte reinkalver.</p><p>Abstract in Norwegian / Sammendrag: Temperaturreguleringens utvikling er studert ved &aring; bestemme nyf&oslash;dte reinkalvers evne til &aring; opprettholde normal kroppstemperatur under p&aring;virkning av gradvis synkende omgivelsestemperatur. Nyf&oslash;dte kalver (1 d&oslash;gn gamle) kan opprettholde sin kroppstemperatur selv ved -15 &deg;C. De kan &oslash;ke sin omsetningshastighet fem til seks ganger. I starten er varmeproduksjonen stimulert av det sympatiske nervesystem. Virkningen av tilf&oslash;rt noradrenalin og propranolol ble studert og skjelving synes &aring; spille bare en mindre rolle umiddelbart etter f&oslash;dselen.</p>


2021 ◽  
Vol 154 (2) ◽  
Author(s):  
Bastiaan J.D. Boukens ◽  
William Joyce ◽  
Ditte Lind Kristensen ◽  
Ingeborg Hooijkaas ◽  
Aldo Jongejan ◽  
...  

Ectothermic vertebrates experience daily changes in body temperature, and anecdotal observations suggest these changes affect ventricular repolarization such that the T-wave in the ECG changes polarity. Mammals, in contrast, can maintain stable body temperatures, and their ventricular repolarization is strongly modulated by changes in heart rate and by sympathetic nervous system activity. The aim of this study was to assess the role of body temperature, heart rate, and circulating catecholamines on local repolarization gradients in the ectothermic ball python (Python regius). We recorded body-surface electrocardiograms and performed open-chest high-resolution epicardial mapping while increasing body temperature in five pythons, in all of which there was a change in T-wave polarity. However, the vector of repolarization differed between individuals, and only a subset of leads revealed T-wave polarity change. RNA sequencing revealed regional differences related to adrenergic signaling. In one denervated and Ringer’s solution–perfused heart, heating and elevated heart rates did not induce change in T-wave polarity, whereas noradrenaline did. Accordingly, electrocardiograms in eight awake pythons receiving intra-arterial infusion of the β-adrenergic receptor agonists adrenaline and isoproterenol revealed T-wave inversion in most individuals. Conversely, blocking the β-adrenergic receptors using propranolol prevented T-wave change during heating. Our findings indicate that changes in ventricular repolarization in ball pythons are caused by increased tone of the sympathetic nervous system, not by changes in temperature. Therefore, ventricular repolarization in both pythons and mammals is modulated by evolutionary conserved mechanisms involving catecholaminergic stimulation.


1986 ◽  
Vol 250 (3) ◽  
pp. E274-E281 ◽  
Author(s):  
J. Himms-Hagen ◽  
S. Hogan ◽  
G. Zaror-Behrens

Feeding female genetically obese (ob/ob) mice a palatable "cafeteria" diet results in increased sympathetic nervous system activity in brown adipose tissue and hypertrophy and increased thermogenesis of this tissue. There is an associated increase in the capacity of the ob/ob mouse to respond thermogenically to noradrenaline, prolongation of its survival in the cold, and an increase in body temperature at all times of day. Thus the cafeteria diet overcomes the usual refractoriness of brown adipose tissue of the ob/ob mouse to noradrenaline and to sympathetic stimulation, increases the low capacity for a thermogenic response to noradrenaline, almost normalizes resistance to cold, and increases the "set point" at which the ob/ob mouse regulates its body temperature. It is concluded that the repetitive sympathetic nervous stimulation engendered by the high-fat cafeteria diet has a trophic action on brown adipose tissue that improves its atrophied functional state and that the low sympathetic nervous system activity usually seen in brown adipose tissue of ob/ob mice eating chow under animal house conditions results in secondary atrophy of the tissue. The results point to a central location for the defect in the ob/ob mouse, perhaps in the control of the sympathetic nervous system in relation to diet availability and composition and to environmental temperature.


1981 ◽  
Vol 97 (1) ◽  
pp. 91-97 ◽  
Author(s):  
H. Storm ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

Abstract. Basal plasma levels for adrenalin (A), noradrenalin (NA), l-triiodothyronine (T3), and l-thyroxine (T4) were determined in rats with a chronically inserted catheter. The experiments described in this report were started 3 days after the surgical procedure when T3 and T4 levels had returned to normal. Basal levels for the catecholamines were reached already 4 h after the operation. The T3/T4 ratio in plasma was significantly increased after 3, 7, and 14 days in rats kept at 4°C and the same holds for the iodide in the 24-h urine after 7 and 14 days at 4°C. The venous NA plasma concentration was increased 6- to 12-fold during the same period of exposure to cold, whereas the A concentration remained at the basal level. During infusion of NA at 23°C the T3/T4 ratio in plasma was significantly increased after 7 days compared to pair-fed controls, and the same holds for the iodide excretion in the 24-h urine. This paper presents further evidence for a role of the sympathetic nervous system on T4 metabolism in rats at resting conditions.


Sign in / Sign up

Export Citation Format

Share Document